Cavitation is a complex flow phenomenon including unsteady characteristics, turbulence, gas-liquid two-phase flow. This paper provides a numerical investigation on comparing the simulation performance of three differe...Cavitation is a complex flow phenomenon including unsteady characteristics, turbulence, gas-liquid two-phase flow. This paper provides a numerical investigation on comparing the simulation performance of three different models in OpenFOAM-Merkle model, Kunz model and Schnerr-Sauer model, which is helpful for understanding the cavitation flow. Considering the influence of vapor-liquid mixing density on turbulent viscous coefficient, the modified SST k-ω model is adopted in this paper to increase the computing reliability. The InterPhaseChangeFoam solver is utilized to simulate the two-dimensional cavitation flow of the Clark-Y hydrofoil with three cavitation models. The hydrodynamic performance including lift coefficient, drag coefficient and cavitation flow shape of the hydrofoil is analyzed. Through the comparison of the numerical results and experimental data, it is found that the Schnerr-Sauer model can get the most accurate results among the three models. And from the simulation point of water and water vapor mixing, the Merkle model has the best water and water vapor mixing simulation.展开更多
Since the standard K-ε model used to predict the strongly swirling flowleads to a large deviation from experimental results, it is necessary to introduce modification tothe standard K-ε model. Based on the algebraic...Since the standard K-ε model used to predict the strongly swirling flowleads to a large deviation from experimental results, it is necessary to introduce modification tothe standard K-ε model. Based on the algebraic Reynolds stress model and Bradshaw's turbulentlength scale modification conception, we present two modified K-ε models. To investigate thebehaviour of the modified turbulence models, they are used to predict two representative turbulentswirling flows. The computational results, after compared with the experimental data, show that themodified K-ε models substantially improve the prediction of the standard K-ε model for theturbulent swirling flows.展开更多
The Duogu Wind Farm, China Huadian Group Corporation’s first wind project in Yunnan, China, has been approved by the Provincial Development and Reform Commission. The acquired site is in Mengzi, in the south-east of ...The Duogu Wind Farm, China Huadian Group Corporation’s first wind project in Yunnan, China, has been approved by the Provincial Development and Reform Commission. The acquired site is in Mengzi, in the south-east of Yunnan Province. The developer has deployed thirty-three 1.5 MW turbines in this wind farm (49.5 MW), and the total cost of construction has been estimated to be CNY449.7 million ($69.61 million). The present study compared the prediction accuracy of two CFD software packages for simulating flow over an escarpment with a steep slope. The two software packages were: 1) Open FOAM (Turbulence model: SST k-ω RANS), which is a free, open source CFD software package developed by Open CFD Ltd at the ESI Group and distributed by the Open FOAM Foundation and 2) RIAM-COMPACT (Turbulence model: Standard Smagorinsky LES), which has been developed by the lead author of the present paper. Generally good agreement was obtained between the results from the simulations with Open FOAM and RIAM-COMPACT.展开更多
Nettings are complex flexible structures used in various fisheries.Understanding the hydrodynamic characteristics,de-formation,and the flow field around nettings is important to design successful fishing gear.This stu...Nettings are complex flexible structures used in various fisheries.Understanding the hydrodynamic characteristics,de-formation,and the flow field around nettings is important to design successful fishing gear.This study investigated the hydrodynamic characteristics and deformation of five nettings made of polyethylene and nylon materials in different attack angles through numeri-cal simulation and physical model experiment.The numerical model was based on the one-way coupling between computational fluid dynamics(CFD)and large deflection nonlinear structural models.Navier-Stokes equations were solved using the finite volume ap-proach,the flow was described using the k-ωshear stress turbulent model,and the large deflection structural dynamic equation was derived using a finite element approach to understand the netting deformation and nodal displacement.The porous media model was chosen to model the nettings in the CFD solver.Numerical data were compared with the experimental results of the physical model to validate the numerical models.Results showed that the numerical data were compatible with the experimental data with an average relative error of 2.34%,3.40%,6.50%,and 5.80%in the normal drag coefficients,parallel drag coefficients,inclined drag coefficients,and inclined lift coefficients,respectively.The hydrodynamic forces of the polyethylene and nylon nettings decreased by approxi-mately 52.56%and 66.66%,respectively,with decreasing net solidity.The drag and lift coefficients of the nylon netting were appro-ximately 17.15%and 6.72%lower than those of the polyethylene netting.A spatial development of turbulent flow occurred around the netting because of the netting wake.However,the flow velocity reduction downstream from the netting in the wake region in-creased with increasing attack angle and net solidity.In addition,the deformation,stress,and strain on each netting increased with in-creasing solidity ratio.展开更多
The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerica...The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerical simulation of single disaster scenario(floodplain, overflow or dike breach), ignoring the composite effects of various phenomena. Therefore, considering the uncertainty in the disaster process of storm surge, scenario analysis was firstly proposed to identify the composite disaster scenario including multiple phenomena by analyzing key driving forces, building scenario matrix and deducing situation logic. Secondly, by combining the advantages of k-ω and k-ε models in the wall treatment, a shear stress transmission k-ω model coupled with VOF was proposed to simulate the 3D flood routing for storm surge disaster. Thirdly, risk degree was introduced to make the risk analysis of storm surge disaster. Finally, based on the scenario analysis, four scenarios with different storm surge intensity(100-year and 200-year frequency) were identified in Tianjin Binhai New Area. Then, 3D numerical simulation and risk map were made for the case.展开更多
In this paper an optimization method of the runner blades in a bulb turbine based on CFD analysis is proposed.In the method the main scales of the turbine including guide vane,runner and draft are maintained.Only the ...In this paper an optimization method of the runner blades in a bulb turbine based on CFD analysis is proposed.In the method the main scales of the turbine including guide vane,runner and draft are maintained.Only the runner blades are modified based on the present method.In the optimization method the runner blade is expressed by spline surface with a gather of coordinate points.The B-spline curve is used to keep the modified blades smooth.In order to make the blade optimization simple and ef- ficient,one of the coordinates is fixed and only the angles of the points are changed according to different modification purposes.Three main optimization principles based on flow diagnosis are presented here.These three principles are all based on the CFD analysis of the internal flow in bulb turbine.For the purpose of method verification,the optimization method is used in a model bulb turbine.A three dimensional steady turbulent computation is carried out through the whole passage including the bulb body,guide vanes,runner and draft tube of the bulb turbine under seven different work conditions.An SST k-ωturbulence model is used during the CFD analysis and the performance of the turbine can be achieved.The runner blade is optimized according to the three optimization principles based on flow diagnosis.The CFD analysis is conducted again on the optimized turbine and another modification is needed if the new turbine can’t satisfy the required performance.Comparison of the computational results between the original turbine and an optimized one indicates that the optimization method is practical and does improve the performance of the bulb turbine.展开更多
To uncover the internal flow characteristics in an ethylene-fueled aeroramp injector/gaspilot(ARI/G-P)flame scramjet,a Reynolds-averaged Navier-Stokes(RANS)solver is constructed under a hybrid polyhedral cell fini...To uncover the internal flow characteristics in an ethylene-fueled aeroramp injector/gaspilot(ARI/G-P)flame scramjet,a Reynolds-averaged Navier-Stokes(RANS)solver is constructed under a hybrid polyhedral cell finite volume frame.The shear stress transport(SST)k-x model is used to predict the turbulence,while the Overmann’s compressibility corrected laminar flamelet model is adopted to simulate the turbulent combustion.Nonreactive computations for Case 1(G-P jet on),Case 2(ARI jets on),and Case 3(both ARI and G-P jets on)were conducted to analyze the mixing mechanism,while reactive Cases 4–7 at equivalent ratios of 0.380,0.278,0.199 and0.167 respectively were calculated to investigate the flame structure and combustion modes.The numerical results are compared well to those of the experiments.It is shown that the G-P jet plays significant role in both the fuel/air mixing and flame holding processes;the combustion for the four reactive cases takes place intensively in the regions downstream of the ARI/G-P unit;Cases 4 and 5are under subsonic combustion mode,whereas Cases 6 and 7 are mode transition critical and supersonic combustion cases,respectively;the mode transition equivalent ratio is approximately 0.20.展开更多
This paper deals with an experimental, theoretical and numerical study of a turbulent flow with separated boundary layers between a rotor and a stator. The system is not subjected to any superimposed radial flow. The ...This paper deals with an experimental, theoretical and numerical study of a turbulent flow with separated boundary layers between a rotor and a stator. The system is not subjected to any superimposed radial flow. The periphery of the cavity is opened to the atmosphere so that the solid body rotation for infinite discs is not always observed. Emphasis was placed on develop- ment of an asymptotic approach and a step-by-step method to compute the radial distribution of the core swirl ratio and the static pressure on the stator side. The theory also includes the radial and axial velocities in the core region. The numerical simulation has been conducted with the commercial CFD code Fluent 6.1. The k- SST turbulence model is used, with the assumption of 2D-axisymmetric and steady flow. CFD validations have been performed by comparison of the numerical results with the corresponding theoretical results. Numerical and experimental results are in good agreement with analytical solutions.展开更多
文摘Cavitation is a complex flow phenomenon including unsteady characteristics, turbulence, gas-liquid two-phase flow. This paper provides a numerical investigation on comparing the simulation performance of three different models in OpenFOAM-Merkle model, Kunz model and Schnerr-Sauer model, which is helpful for understanding the cavitation flow. Considering the influence of vapor-liquid mixing density on turbulent viscous coefficient, the modified SST k-ω model is adopted in this paper to increase the computing reliability. The InterPhaseChangeFoam solver is utilized to simulate the two-dimensional cavitation flow of the Clark-Y hydrofoil with three cavitation models. The hydrodynamic performance including lift coefficient, drag coefficient and cavitation flow shape of the hydrofoil is analyzed. Through the comparison of the numerical results and experimental data, it is found that the Schnerr-Sauer model can get the most accurate results among the three models. And from the simulation point of water and water vapor mixing, the Merkle model has the best water and water vapor mixing simulation.
文摘Since the standard K-ε model used to predict the strongly swirling flowleads to a large deviation from experimental results, it is necessary to introduce modification tothe standard K-ε model. Based on the algebraic Reynolds stress model and Bradshaw's turbulentlength scale modification conception, we present two modified K-ε models. To investigate thebehaviour of the modified turbulence models, they are used to predict two representative turbulentswirling flows. The computational results, after compared with the experimental data, show that themodified K-ε models substantially improve the prediction of the standard K-ε model for theturbulent swirling flows.
文摘The Duogu Wind Farm, China Huadian Group Corporation’s first wind project in Yunnan, China, has been approved by the Provincial Development and Reform Commission. The acquired site is in Mengzi, in the south-east of Yunnan Province. The developer has deployed thirty-three 1.5 MW turbines in this wind farm (49.5 MW), and the total cost of construction has been estimated to be CNY449.7 million ($69.61 million). The present study compared the prediction accuracy of two CFD software packages for simulating flow over an escarpment with a steep slope. The two software packages were: 1) Open FOAM (Turbulence model: SST k-ω RANS), which is a free, open source CFD software package developed by Open CFD Ltd at the ESI Group and distributed by the Open FOAM Foundation and 2) RIAM-COMPACT (Turbulence model: Standard Smagorinsky LES), which has been developed by the lead author of the present paper. Generally good agreement was obtained between the results from the simulations with Open FOAM and RIAM-COMPACT.
基金This study was financially sponsored by the National Natural Science Foundation of China(Nos.31902426,41806110)the Shanghai Sailing Program(No.19YF1419800)+1 种基金the National Key R&D Program of China(No.2019YFD 0901502)the Special Project for the Exploitation and Utilization of Antarctic Biological Resources of Ministry of Agriculture and Rural Affairs(No.D-8002-18-0097).
文摘Nettings are complex flexible structures used in various fisheries.Understanding the hydrodynamic characteristics,de-formation,and the flow field around nettings is important to design successful fishing gear.This study investigated the hydrodynamic characteristics and deformation of five nettings made of polyethylene and nylon materials in different attack angles through numeri-cal simulation and physical model experiment.The numerical model was based on the one-way coupling between computational fluid dynamics(CFD)and large deflection nonlinear structural models.Navier-Stokes equations were solved using the finite volume ap-proach,the flow was described using the k-ωshear stress turbulent model,and the large deflection structural dynamic equation was derived using a finite element approach to understand the netting deformation and nodal displacement.The porous media model was chosen to model the nettings in the CFD solver.Numerical data were compared with the experimental results of the physical model to validate the numerical models.Results showed that the numerical data were compatible with the experimental data with an average relative error of 2.34%,3.40%,6.50%,and 5.80%in the normal drag coefficients,parallel drag coefficients,inclined drag coefficients,and inclined lift coefficients,respectively.The hydrodynamic forces of the polyethylene and nylon nettings decreased by approxi-mately 52.56%and 66.66%,respectively,with decreasing net solidity.The drag and lift coefficients of the nylon netting were appro-ximately 17.15%and 6.72%lower than those of the polyethylene netting.A spatial development of turbulent flow occurred around the netting because of the netting wake.However,the flow velocity reduction downstream from the netting in the wake region in-creased with increasing attack angle and net solidity.In addition,the deformation,stress,and strain on each netting increased with in-creasing solidity ratio.
基金Supported by the National Basic Research Program of China("973" Program,No.2013CB035906)Natural Science Foundation of Tianjin(No.JCYBJC19500)the Foundation of Innovative Research Groups of National Natural Science Foundation of China(No.51321065)
文摘The occurrence of storm surge disaster is often accompanied with floodplain, overflow, dike breach and other complex phenomena, while current studies on storm surge flooding are more concentrated on the 1D/2D numerical simulation of single disaster scenario(floodplain, overflow or dike breach), ignoring the composite effects of various phenomena. Therefore, considering the uncertainty in the disaster process of storm surge, scenario analysis was firstly proposed to identify the composite disaster scenario including multiple phenomena by analyzing key driving forces, building scenario matrix and deducing situation logic. Secondly, by combining the advantages of k-ω and k-ε models in the wall treatment, a shear stress transmission k-ω model coupled with VOF was proposed to simulate the 3D flood routing for storm surge disaster. Thirdly, risk degree was introduced to make the risk analysis of storm surge disaster. Finally, based on the scenario analysis, four scenarios with different storm surge intensity(100-year and 200-year frequency) were identified in Tianjin Binhai New Area. Then, 3D numerical simulation and risk map were made for the case.
基金supported by the Tianjin Technical Innovative Project,Tianjin Tianfa Heavy Machinery Company Ltd.and Harbin Institute of Large Electric Machinery
文摘In this paper an optimization method of the runner blades in a bulb turbine based on CFD analysis is proposed.In the method the main scales of the turbine including guide vane,runner and draft are maintained.Only the runner blades are modified based on the present method.In the optimization method the runner blade is expressed by spline surface with a gather of coordinate points.The B-spline curve is used to keep the modified blades smooth.In order to make the blade optimization simple and ef- ficient,one of the coordinates is fixed and only the angles of the points are changed according to different modification purposes.Three main optimization principles based on flow diagnosis are presented here.These three principles are all based on the CFD analysis of the internal flow in bulb turbine.For the purpose of method verification,the optimization method is used in a model bulb turbine.A three dimensional steady turbulent computation is carried out through the whole passage including the bulb body,guide vanes,runner and draft tube of the bulb turbine under seven different work conditions.An SST k-ωturbulence model is used during the CFD analysis and the performance of the turbine can be achieved.The runner blade is optimized according to the three optimization principles based on flow diagnosis.The CFD analysis is conducted again on the optimized turbine and another modification is needed if the new turbine can’t satisfy the required performance.Comparison of the computational results between the original turbine and an optimized one indicates that the optimization method is practical and does improve the performance of the bulb turbine.
基金co-supported by the National Natural Science Foundation of China (Nos. 51176003 and 51276007)the Fundamental Research Funds for the Central Universities of China (No. YWF-15-GFY)
文摘To uncover the internal flow characteristics in an ethylene-fueled aeroramp injector/gaspilot(ARI/G-P)flame scramjet,a Reynolds-averaged Navier-Stokes(RANS)solver is constructed under a hybrid polyhedral cell finite volume frame.The shear stress transport(SST)k-x model is used to predict the turbulence,while the Overmann’s compressibility corrected laminar flamelet model is adopted to simulate the turbulent combustion.Nonreactive computations for Case 1(G-P jet on),Case 2(ARI jets on),and Case 3(both ARI and G-P jets on)were conducted to analyze the mixing mechanism,while reactive Cases 4–7 at equivalent ratios of 0.380,0.278,0.199 and0.167 respectively were calculated to investigate the flame structure and combustion modes.The numerical results are compared well to those of the experiments.It is shown that the G-P jet plays significant role in both the fuel/air mixing and flame holding processes;the combustion for the four reactive cases takes place intensively in the regions downstream of the ARI/G-P unit;Cases 4 and 5are under subsonic combustion mode,whereas Cases 6 and 7 are mode transition critical and supersonic combustion cases,respectively;the mode transition equivalent ratio is approximately 0.20.
文摘This paper deals with an experimental, theoretical and numerical study of a turbulent flow with separated boundary layers between a rotor and a stator. The system is not subjected to any superimposed radial flow. The periphery of the cavity is opened to the atmosphere so that the solid body rotation for infinite discs is not always observed. Emphasis was placed on develop- ment of an asymptotic approach and a step-by-step method to compute the radial distribution of the core swirl ratio and the static pressure on the stator side. The theory also includes the radial and axial velocities in the core region. The numerical simulation has been conducted with the commercial CFD code Fluent 6.1. The k- SST turbulence model is used, with the assumption of 2D-axisymmetric and steady flow. CFD validations have been performed by comparison of the numerical results with the corresponding theoretical results. Numerical and experimental results are in good agreement with analytical solutions.