期刊文献+
共找到301篇文章
< 1 2 16 >
每页显示 20 50 100
OPTIMIZATION OF WEIGHTED HIGH-RESOLUTION RANGE PROFILE FOR RADAR TARGET RECOGNITION 被引量:1
1
作者 朱劼昊 周建江 吴杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第2期157-162,共6页
For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize th... For the recognition of high-resolution range profile (HRRP) in radar, the weighted HRRP can reduce the instability of range cells caused by the attitude change of targets. A novel approach is proposed to optimize the weighted HRRP. In the approach, the separability of weighted HRRPs in different targets is measured by de- signing an objective function, and the weighted coefficients are computed by using the gradient descent method, thus enhancing the influence of stable range cells. Simulation results based on five aircraft models show that the approach can effectively optimize the weighted HRRP and improve the recognition accuracy. 展开更多
关键词 radar target recognition high-resolution range profile scattering center model gradient descentmethod
下载PDF
Radar high resolution range profile recognition via multi-SV method 被引量:6
2
作者 Long Li Zheng Liu Tao Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期879-889,共11页
For radar high resolution range profile (HRRP) recognition, three aspects are of great importance to improve the performance, i.e. discrimination for outlier, classification for inner and an accurate description for f... For radar high resolution range profile (HRRP) recognition, three aspects are of great importance to improve the performance, i.e. discrimination for outlier, classification for inner and an accurate description for feature space. To tackle these issues, a novel target recognition method is designed, denoted by the multiple support vectors (multi-SV) method. With the proposed method, a special framework is constructed by a treble correlate support vector model to segment the feature space to two regions with the distribution of density, and then the description and classification hyperplane for each region are achieved. Based on the support vector framework, this method needs less memory and computation complexity to fit practical radar HRRP recognition. Finally, the experiment based on the measured data verifies the excellent performance of this method. 展开更多
关键词 radar target recognition high resolution range profile support vector DISCRIMINATION CLASSIFICATION
下载PDF
THE INFLUENCE OF SPECKLE ON HIGH RESOLUTION RANGE PROFILE RECOGNITION BASED ON THE MATCHING SCORE
3
作者 Zhang Rui Wei Xizhang Li Xiang 《Journal of Electronics(China)》 2012年第3期222-228,共7页
Template database is the key to radar automation target recognition based on High Resolution Range Profile (HRRP). From the traditional perspective, average HRRP is a valid template for it can represent each HRRP with... Template database is the key to radar automation target recognition based on High Resolution Range Profile (HRRP). From the traditional perspective, average HRRP is a valid template for it can represent each HRRP without scatterer Moving Through Range Cell (MTRC). However, template database based on this assumption is always challenged by measured data. One reason is that speckle happens in the frame without scatterer MTRC. Speckle makes HRRP fluctuate sharply and not match well with the average HRRP. We precisely introduce the formation mechanism of speckle. Then, we make an insight into the principle of matching score. Based on the conclusion, we study the properties of matching score between speckled HRRP and the average HRRP. The theoretical analysis and Monte Carlo experimental results demonstrate that speckle makes HRRP not to match well with the average HRRP according to the energy ratio of speckled scatterers. On the assumption of ideal scattering centre model, speckled HRRP has a matching score less than 85% with the average HRRP if speckled scatterers occupy more than 50% energy of the target. 展开更多
关键词 Radar automatic target recognition High Resolution range profile (HRRP) Aspect sensitivity Matching score SPECKLE
下载PDF
A Target Recognition Approach to Projecting HRR Profiles onto Subspace 被引量:1
4
作者 Pei Bingnan & Bao ZhengKey Lab. of Radar Signal Processing, Xidian University, Xi’an 710071, P. R. China Dept. of Electronic Engineering, Zhengzhou University, Zhengzhou 450052, P.R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第1期36-40,共5页
Abstract: A array of the azimuthally averaged range-profile vectors and the inter-class and intra-class divergence matrixesare constructed iwth many frames of the high resolution range profiles which result from radar... Abstract: A array of the azimuthally averaged range-profile vectors and the inter-class and intra-class divergence matrixesare constructed iwth many frames of the high resolution range profiles which result from radar echoes of airplanes. Takingthe methods of whitening transformation and SVD produces a system of subspace vectors for target recognition. Where-upon, a template library for target recognition is built by the projection of a class-mean vector made from the radar dataonto the subspace for recognition. By Euclidean distance, a comparison is made between the above projection and eachtemplate in the library, to decide which class the target belongs to. Finally, simulations with the experimental radar dataarte given to show that the proposed method is robust to variation in azimuth and immune to additive Gaussian noisewhen SNR≥5dB. 展开更多
关键词 Automatic target recognition High range resolution profile Distance classifier SVD Computer simulation
下载PDF
Feature Extraction of Radar Range Profiles Based on Normalized Central Moments
5
作者 傅雄军 高梅国 《Journal of Beijing Institute of Technology》 EI CAS 2004年第S1期17-20,共4页
The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as ... The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as feature vector for radar target recognition. The common feature extraction method for high resolution range profile obtained by using Fourier-modified direct Mellin transform is inefficient and unsatisfactory in recognition rate And. generally speaking, the automatic target recognition method based on inverse synthetic aperture radar 2-dimensional imaging is not competent for real time object identification task because it needs complicated motion compensation which is sometimes too difficult to carry out. While the method applied here is competent for real-time recognition because of its computational efficiency. The result of processing experimental data indicates that this method is good at recognition. 展开更多
关键词 radar range profile: automatic target recognition: normalized central moment: clustering analysis: nearest neighbor classifier
下载PDF
HRRP target recognition based on kernel joint discriminant analysis 被引量:9
6
作者 LIU Wenbo YUAN Jiawen +1 位作者 ZHANG Gong SHEN Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第4期703-708,共6页
With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on ... With the improvement of radar resolution,the dimension of the high resolution range profile(HRRP)has increased.In order to solve the small sample problem caused by the increase of HRRP dimension,an algorithm based on kernel joint discriminant analysis(KJDA)is proposed.Compared with the traditional feature extraction methods,KJDA possesses stronger discriminative ability in the kernel feature space.K-nearest neighbor(KNN)and kernel support vector machine(KSVM)are applied as feature classifiers to verify the classification effect.Experimental results on the measured aircraft datasets show that KJDA can reduce the dimensionality,and improve target recognition performance. 展开更多
关键词 high RESOLUTION range profile(HRRP) target recognition small SAMPLE problem FEATURE extraction DIMENSION reduction
下载PDF
Radar group target recognition based on HRRPs and weighted mean shift clustering 被引量:7
7
作者 GUO Pengcheng LIU Zheng WANG Jingjing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1152-1159,共8页
When range high-resolution radar is applied to target recognition,it is quite possible for the high-resolution range profiles(HRRPs)of group targets in a beam to overlap,which reduces the target recognition performanc... When range high-resolution radar is applied to target recognition,it is quite possible for the high-resolution range profiles(HRRPs)of group targets in a beam to overlap,which reduces the target recognition performance of the radar.In this paper,we propose a group target recognition method based on a weighted mean shift(weighted-MS)clustering method.During the training phase,subtarget features are extracted based on the template database,which is established through simulation or data acquisition,and the features are fed to the support vector machine(SVM)classifier to obtain the classifier parameters.In the test phase,the weighted-MS algorithm is exploited to extract the HRRP of each subtarget.Then,the features of the subtarget HRRP are extracted and used as input in the SVM classifier to be recognized.Compared to the traditional group target recognition method,the proposed method has the advantages of requiring only a small amount of computation,setting parameters automatically,and having no requirement for target motion.The experimental results based on the measured data show that the method proposed in this paper has better recognition performance and is more robust against noise than other recognition methods. 展开更多
关键词 CLUSTERING group target recognition high resolution range profile(HRRP) mean shift(MS)
下载PDF
High Range Resolution Profile Automatic Target Recognition Using Sparse Representation 被引量:2
8
作者 周诺 陈炜 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第5期556-562,共7页
Sparse representation is a new signal analysis method which is receiving increasing attention in recent years. In this article, a novel scheme solving high range resolution profile automatic target recognition for gro... Sparse representation is a new signal analysis method which is receiving increasing attention in recent years. In this article, a novel scheme solving high range resolution profile automatic target recognition for ground moving targets is proposed. The sparse representation theory is applied to analyzing the components of high range resolution profiles and sparse coefficients are used to describe their features. Numerous experiments with the target type number ranging from 2 to 6 have been implemented. Results show that the proposed scheme not only provides higher recognition preciseness in real time, but also achieves more robust performance as the target type number increases. 展开更多
关键词 automatic target recognition high range resolution profile sparse representation feature extraction dictionary generation
原文传递
Ship recognition based on HRRP via multi-scale sparse preserving method
9
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
下载PDF
New statistical model for radar HRRP target recognition 被引量:2
10
作者 Qingyu Hou Feng Chen Hongwei Liu Zheng Bao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期204-210,共7页
The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical charac- teristics. But how to determine the proper number of the models is a problem. This paper devel... The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical charac- teristics. But how to determine the proper number of the models is a problem. This paper develops a variational Bayesian mixture of factor analyzers (VBMFA) model. This procedure can obtain a lower bound on the Bayesian integral using the Jensen's inequality. An analytical solution of the Bayesian integral could be obtained by a hypothesis that latent variables in the model are indepen- dent. During computing the parameters of the model, birth-death moves are utilized to determine the optimal number of model au- tomatically. Experimental results for measured data show that the VBMFA method has better recognition performance than FA and MFA method. 展开更多
关键词 radar automatic target recognition (RATR) high reso- lution range profile (HRRP) variational Bayesian mixtures of factor analyzers (VBMFA) variational Bayesian(VB) mixtures of factor analyzers (MFA).
下载PDF
A New Radar Target Recognition Method Based on Polarimetric Processing and Neural Learning
11
作者 姜义成 马子龙 +1 位作者 刘永坦 顾建政 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1998年第3期68-70,共3页
The new millimeter-wave(MMW) radar target recognition method proposed uses polarmetric information to obtain stable amplitudes of range profiles and neural learning to extract angle-invariant features of range profile... The new millimeter-wave(MMW) radar target recognition method proposed uses polarmetric information to obtain stable amplitudes of range profiles and neural learning to extract angle-invariant features of range profiles and polarimetric processing reduces speckle to enhance ability to discriminate targets, and in comparison with conventional approaches, subclass features obtained by the neural learning carries more information and thus makes the correctness of target classification higher and simulation results vended the validity of this approach. 展开更多
关键词 MMW RADAR target recognition range profile polarimetric processing
下载PDF
RADAR TARGET RECOGNITION BASED ON NEURAL NETWORK
12
作者 Zhao Qun Bao Zheng Ye Wei (Institute of Electronics Engineering, Xidian University, Xi’an 710071) 《Journal of Electronics(China)》 1996年第1期1-10,共10页
The problem of radar target recognition using range profiles is investigated in this paper, based on a Radial Basis Function Network(RBFN). A preprocessing method is proposed, which performs amplitude average of the r... The problem of radar target recognition using range profiles is investigated in this paper, based on a Radial Basis Function Network(RBFN). A preprocessing method is proposed, which performs amplitude average of the range profiles to obtain more stable patterns. After pointing out the limitedness of traditional empirical formula, this paper also gives a method of estimating the shape parameter a of a Gaussian kernel function according-to spatial distribution of the training samples. It is shown that the method proposed in this paper offers promise for target recognition, from both the theoretical analysis and the experimental results of rotating platform imaging based on data acquired in a microwave anechoic chamber. 展开更多
关键词 NEURAL network RADIAL BASIS function range profile target recognition
下载PDF
RADAR HRRP RECOGNITION BASED ON THE MINIMUM KULLBACK-LEIBLER DISTANCE CRITERION 被引量:2
13
作者 Yuan Li Liu Hongwei Bao Zheng 《Journal of Electronics(China)》 2007年第2期199-203,共5页
To relax the target aspect sensitivity and use more statistical information of the High Range Resolution Profiles (HRRPs), in this paper, the average range profile and the variance range profile are extracted together... To relax the target aspect sensitivity and use more statistical information of the High Range Resolution Profiles (HRRPs), in this paper, the average range profile and the variance range profile are extracted together as the feature vectors for both training data and test data representa-tion. And a decision rule is established for Automatic Target Recognition (ATR) based on the mini-mum Kullback-Leibler Distance (KLD) criterion. The recognition performance of the proposed method is comparable with that of Adaptive Gaussian Classifier (AGC) with multiple test HRRPs, but the proposed method is much more computational efficient. Experimental results based on the measured data show that the minimum KLD classifier is effective. 展开更多
关键词 High range Resolution profile (HRRP) Automatic target recognition (ATR) Kullback-Leibler Distance (KLD) Adaptive Gaussian Classifier (AGC)
下载PDF
基于语义引导层次化分类的雷达地面目标HRRP识别方法 被引量:1
14
作者 李阳 刘艺辰 +1 位作者 张亮 王彦华 《信号处理》 CSCD 北大核心 2024年第1期126-137,共12页
高分辨距离像(HRRP)反映了目标空间散射结构在雷达视线方向的投影,近年来被认为是地面目标识别的重要途径。现有的HRRP识别方法采用手工特征加传统机器学习分类器,均属于平面分类方法,即采用统一标准不加区别的优选特征并单次决策最终... 高分辨距离像(HRRP)反映了目标空间散射结构在雷达视线方向的投影,近年来被认为是地面目标识别的重要途径。现有的HRRP识别方法采用手工特征加传统机器学习分类器,均属于平面分类方法,即采用统一标准不加区别的优选特征并单次决策最终类别。然而该方法在实际应用中面临种类繁杂、数据不平衡、HRRP姿态敏感性等诸多问题,难以获取最佳的应用效果。层次化方法采取分而治之思想,将一个复杂的细粒度识别任务拆解为多个简单的识别子任务。本文采用层次化识别的思路,提出了一种基于语义引导层次化分类的雷达地面目标识别方法。该方法以联合语义和数据构建的树形结构将一个复杂的细粒度识别任务拆解为多个简单的识别子任务,并针对每一个识别子任务匹配一套优选特征集和一个局部分类器。本方法在仿真数据和实测数据上完成了验证。实验结果表明了本文方法处理地面目标识别任务的有效性。 展开更多
关键词 雷达目标识别 高分辨距离像 层次化分类
下载PDF
基于高分辨一维距离像及其特征的空间目标识别效果分析 被引量:1
15
作者 王放 韩晓磊 张延鑫 《电讯技术》 北大核心 2024年第3期465-469,共5页
目标高分辨一维距离像(High Resolution Range Profile,HRRP)中包含了丰富的目标尺寸、结构等目标特征,是进行空间目标身份识别的有效途径。但由于卫星宽带雷达实测数据获取难度大,前期相关研究多集中于基于HRRP的目标识别算法,结论也... 目标高分辨一维距离像(High Resolution Range Profile,HRRP)中包含了丰富的目标尺寸、结构等目标特征,是进行空间目标身份识别的有效途径。但由于卫星宽带雷达实测数据获取难度大,前期相关研究多集中于基于HRRP的目标识别算法,结论也多是基于仿真数据和少量类别(几类)的前提下得到的,与工程应用实际情况有较大差距,工程指导意义有限。为解决这一问题,基于地基雷达获取的30类卫星目标的大量一维距离像实测数据,从识别正确率的角度对目标HRRP及其特征(组合)的可分性和在空间目标个体识别中的应用效果进行了量化分析,分析结果可为后续基于HRRP的空间目标个体识别技术研究和工程应用提供可靠依据。 展开更多
关键词 空间目标 高分辨率一维距离像(HRRP) 目标识别 识别效果分析
下载PDF
基于深度残差收缩网络的雷达空中目标识别
16
作者 尹建国 盛文 蒋伟 《系统工程与电子技术》 EI CSCD 北大核心 2024年第9期3012-3018,共7页
雷达空中目标高分辨距离像(high resolution range profile,HRRP)中往往包含一定的杂波噪声,利用HRRP开展空中目标识别需要重点考虑噪声的影响。针对上述问题,提出一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)的雷... 雷达空中目标高分辨距离像(high resolution range profile,HRRP)中往往包含一定的杂波噪声,利用HRRP开展空中目标识别需要重点考虑噪声的影响。针对上述问题,提出一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)的雷达空中目标HRRP识别方法。该网络将深度残差网络、软阈值函数和注意力机制结合起来,采用跨层恒等连接方式,不仅可以避免网络层数过深造成梯度消失或梯度爆炸,从而导致网络学习能力下降的问题,还可以有效过滤掉识别过程中噪声特征的影响,使模型专注于目标区域的深度特征识别,提升强噪声背景下模型的识别能力。实验结果表明,相对于其他常用的深度学习模型,所提方法在各个信噪比条件下,识别效果均有一定的优势,该模型对噪声具有较强的鲁棒性。 展开更多
关键词 空中目标识别 高分辨距离像 深度残差收缩网络 噪声鲁棒性
下载PDF
基于判别性无穷模糊受限玻尔兹曼机模型的HRRP序列识别
17
作者 陈士超 魏靖彪 +4 位作者 范俊 魏玺章 王泽朝 孙谦 刘明 《兵工学报》 EI CAS CSCD 北大核心 2024年第S01期43-50,共8页
针对雷达高分辨率距离像(High Resolution Range Profiles, HRRP)序列数据在受干扰或背景杂波严重时目标识别性能较差的问题,提出一种判别性无穷模糊受限玻尔兹曼机(Discriminative Infinite Fuzzy Re-stricted Boltzmann Machine, Dis-... 针对雷达高分辨率距离像(High Resolution Range Profiles, HRRP)序列数据在受干扰或背景杂波严重时目标识别性能较差的问题,提出一种判别性无穷模糊受限玻尔兹曼机(Discriminative Infinite Fuzzy Re-stricted Boltzmann Machine, Dis-iFRBM)模型。该模型结合判别性受限玻尔兹曼机分类和无穷受限玻尔兹曼机模型复杂度自适应特点,汲取模糊神经网络在低信噪比环境下提取特征更稳定的优点,将模型参数从实数扩展为模糊参数,实现了对HRRP序列数据原始特征的更稳定提取以及对雷达目标的更稳健识别。通过对多个HRRP序列的识别实验,验证了Dis-iFRBM的识别稳定性以及鲁棒性,与其他模型的对比实验验证了所提模型在“噪声”环境中的有效性和优越性。 展开更多
关键词 高分辨率距离像 目标识别 判别性无穷模糊受限玻尔兹曼机 随机排列 噪声数据
下载PDF
类别数据流和特征空间双分离的类增量学习算法
18
作者 云涛 潘泉 +2 位作者 刘磊 白向龙 刘宏 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第10期3879-3889,共11页
针对类增量学习(CIL)中的灾难性遗忘问题,该文提出一种不同类的数据流和特征空间双分离的类增量学习算法。双分离(S2)算法在1次增量任务中包含2个阶段。第1个阶段通过分类损失、蒸馏损失和对比损失的综合约束训练网络。根据模块功能对... 针对类增量学习(CIL)中的灾难性遗忘问题,该文提出一种不同类的数据流和特征空间双分离的类增量学习算法。双分离(S2)算法在1次增量任务中包含2个阶段。第1个阶段通过分类损失、蒸馏损失和对比损失的综合约束训练网络。根据模块功能对各类的数据流进行分离,以增强新网络对新类别的识别能力。通过对比损失的约束,增大各类数据在特征空间中的距离,避免由于旧类样本的不完备性造成特征空间被新类侵蚀。第2个阶段对不均衡的数据集进行动态均衡采样,利用得到的均衡数据集对新网络进行动态微调。利用实测和仿真数据构建了一个飞机目标高分辨率距离像增量学习数据集,实验结果表明该算法相比其它几种对比算法在保持高可塑性的同时,具有更高的稳定性,综合性能更优。 展开更多
关键词 雷达目标识别 逆合成孔径雷达 高分辨率距离像 类增量学习
下载PDF
基于自适应阈值卷积网络的抗干扰雷达目标识别
19
作者 王佳豪 陈澍元 +1 位作者 赵书敏 蒋忠进 《雷达科学与技术》 北大核心 2024年第5期487-494,共8页
本文提出了一种自适应阈值卷积网络(ATCN),基于HRRP数据进行抗干扰雷达目标识别。ATCN中的核心模块是自适应阈值卷积单元(ATCU),该模块能准确高效地完成对HRRP数据的特征提取。在ATCU中,采用自适应阈值函数充当激活函数,自动调整阈值以... 本文提出了一种自适应阈值卷积网络(ATCN),基于HRRP数据进行抗干扰雷达目标识别。ATCN中的核心模块是自适应阈值卷积单元(ATCU),该模块能准确高效地完成对HRRP数据的特征提取。在ATCU中,采用自适应阈值函数充当激活函数,自动调整阈值以面对不同信干比的数据;利用多个不同尺度的卷积核来捕获HRRP数据中的区域差异特征;引入通道注意力机制和残差连接优化网络结构。本文进行了大量的抗干扰目标识别实验,实验结果表明,相比于所选择的3种对比网络,本文的ATCN网络能在不同干扰类型和不同信干比下提供更优的平均识别率和更好的指标稳定性,且具有更少的网络模型参数量和浮点运算次数,具备轻量化和高效的特点。 展开更多
关键词 雷达自动目标识别 高分辨距离像 压制性干扰 自适应阈值卷积单元
下载PDF
基于Attention-Inception网络集成的雷达HRRP序列目标识别方法
20
作者 方梦瑶 张贞凯 李汪华 《电讯技术》 北大核心 2024年第9期1370-1378,共9页
传统的雷达高分辨距离像(High Resolution Range Profile,HRRP)序列识别方法依赖于人工提取特征,并且在使用现有的经典深度学习方法识别小数据集时存在梯度消失和过拟合问题,导致收敛速度慢,识别率低。针对上述问题,提出了一种基于注意... 传统的雷达高分辨距离像(High Resolution Range Profile,HRRP)序列识别方法依赖于人工提取特征,并且在使用现有的经典深度学习方法识别小数据集时存在梯度消失和过拟合问题,导致收敛速度慢,识别率低。针对上述问题,提出了一种基于注意力机制的集成Inception网络模型,通过集成Attention-Inception单分支网络,实现了HRRP序列更深层次特征的提取;通过对模型的损失函数加入L2正则化,缓解小数据集在集成网络中的过拟合问题;利用Inception Ⅰ和Inception Ⅱ结构提取HRRP序列多尺度特征,并引入注意力机制计算特征序列的分配权重;加入残差结构,减缓了集成网络梯度消失问题。在预处理后的HRRP序列上进行实验结果表明,所提方法的目标识别率达到93.3%,并且与未去除噪声的HRRP序列相比目标识别率提高了14.67%。 展开更多
关键词 高分辨距离像序列 目标识别 神经网络集成 注意力机制 Inception结构
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部