To position personnel in mines, the study discussed in this paper built on the tunnel personnel positioning method on the basis of both TOA and location-finger print(LFP) positioning. Given non-line of sight(NLOS) tim...To position personnel in mines, the study discussed in this paper built on the tunnel personnel positioning method on the basis of both TOA and location-finger print(LFP) positioning. Given non-line of sight(NLOS) time delay in signal transmission caused by facilities and equipment shielding in tunnels and TOA measurement errors in both LFP database data and real-time data, this paper puts forth a database data de-noising algorithm based on distance threshold limitation and modified mean filtering(MMF), as well as a real-time data suppression algorithm based on speed threshold limitation and MMF.On this basis, a nearest neighboring data matching algorithm based on historical location and the speed threshold limitation is used to estimate personnel location and realize accurate personnel positioning.The results from both simulation and the experiment suggest that: compared with the basic LFP positioning method and the method that only suppresses real-time data error, the tunnel personnel positioning methods based on TOA and modified LFP positioning permits effectively eliminating error in TOA measurement, making the measured data close to the true positional data, and dropping the positioning error:the maximal positioning error in measurements from experiment drops by 9 and 3 m, respectively, and the positioning accuracy of 3 m is achievable in the condition used in the experiment.展开更多
The multi-model assessment of glacio-hydrological regimes can enhance our understanding of glacier response to climate change.This improved knowledge can uplift our computing abilities to estimate the contributing com...The multi-model assessment of glacio-hydrological regimes can enhance our understanding of glacier response to climate change.This improved knowledge can uplift our computing abilities to estimate the contributing components of the river discharge.This study examined and compared the hydrological responses in the glacier-dominated Shigar River basin(SRB)under various climatic scenarios using a semi-distributed Modified Positive Degree Day Model(MPDDM)and a distributed Glacio-hydrological Degree-day Model(GDM).Both glacio-hydrological models were calibrated and validated against the observed hydro-meteorological data from 1988–1992 and 1993–1997.Temperature and precipitation data from Shigar and Skardu meteorological stations were used along with field estimated degree-day factor,temperature,and precipitation gradients.The results from both models indicate that the snow and ice melt are vital contributors to sustain river flow in the catchment.However,MPDDM estimated 68%of rain and baseflow contribution to annual river runoff despite low precipitation during the summer monsoon,while GDM estimated 14%rain and baseflow contribution.Likewise,MPDDM calculated 32%,and GDM generated 86%of the annual river runoff from snow and ice melt.MPDDM simulated river discharge with 0.86 and 0.78 NSE for calibration and validation,respectively.Similarly,GDM simulated river discharge with improved accuracy of 0.87 for calibration and 0.84 NSE for the validation period.The snow and ice melt is significant in sustaining river flow in the SRB,and substantial changes in melt characteristics of snow and ice are expected to have severe consequences on seasonal water availability.Based on the sensitivity analysis,both models’outputs are highly sensitive to the variation in temperature.Furthermore,compared to MPDDM,GDM simulated considerable variation in the river discharge in climate scenarios,RCP4.5 and 8.5,mainly due to the higher sensitivity of GDM model outputs to temperature change.The integration of an updated melt module and two reservoir baseflow module in GDM is anticipated to advance the representation of hydrological components,unlike one reservoir baseflow module used separately in MPDDM.The restructured melt and baseflow modules in GDM have fundamentally enriched our perception of glacio-hydrological dynamics in the catchment.展开更多
In rotational incremental sheet forming( RISF) process,the friction heating of rotational tool could lead to local temperature rise of the sheet and cause the improvement of sheet's formability.Lightweight metal,s...In rotational incremental sheet forming( RISF) process,the friction heating of rotational tool could lead to local temperature rise of the sheet and cause the improvement of sheet's formability.Lightweight metal,such as magnesium alloy,could be deformed by RISF without additional heating. The objective of this study is to investigate the effects of forming parameters,namely,tool rotational speed,feed-rate,step size and wall angle,on the local temperature rise. Using response surface methodology and central composite design( CCD) experimental design,the significance,sequence of parameters and regression models would be analyzed with AZ31 B as the experimental material,and 3D response surface plots would be shown. Combined with actual processing conditions,the measures to improve the local temperature rise by modifying each parameter would be discussed in the end. The results showed that hierarchy of the parameters with respect to the significance of their effects on the local temperature at the side wall was: feed-rate,step size,and rotational speed,while at the bottom it was: feed-rate,step size,wall angle, and rotational speed, and no significant interaction appeared. It was found that the most significant parameter was not rotational speed,but feed-rate,followed by step size,for both test positions. In addition, the local temperature would increase by elevating step size,wall angle,rotating rate,and bringing down of feed-rate.展开更多
The stable coordinated metallo-complexes based on 2,2′:6′,2″-terpyridine(tpy)and its derivatives have been widely researched for various wide-ranging applications in photoelectronics,catalysis,sensor,photoluminesce...The stable coordinated metallo-complexes based on 2,2′:6′,2″-terpyridine(tpy)and its derivatives have been widely researched for various wide-ranging applications in photoelectronics,catalysis,sensor,photoluminescence,and so on.However,the most reported studies ignored the comprehensive comparison between structures modified by different positions and photoluminescence.Herein,we design a series of metallo-complexes which were assembled with tpy substituted triphenylamine(TPA)at different positions and metal ions and explored their photophysical properties.In the solution state,MLE_(2)based on the 5,5″-positions modification showed the highest PLQYs and PL intensity.With the increase of solvent polarity,MLB2exhibit the largest redshift.In the solid state,from MLA_(2)to MLE_(2),the emission colours are gradually red-shifted from yellow to red.The findings in this work may pave a new way to design functional metallo-complexes,not just for PL properties.展开更多
The small ubiquitin-related modifier (SUMO) modification plays an important role in the regulation of abscisic acid (ABA) signaling, but the function of the SUMO protease, in ABA signaling, remains largely unknown...The small ubiquitin-related modifier (SUMO) modification plays an important role in the regulation of abscisic acid (ABA) signaling, but the function of the SUMO protease, in ABA signaling, remains largely unknown. Here, we show that the SUMO protease, ASPI positively regulates ABA signaling. Mutations in ASPI resulted in an ABA-insensitive phenotype, during early seedling develop- ment. Wild-type ASP1 successfully rescued, whereas an ASPI mutant (C577S), defective in SUMO protease activity, failed to rescue, the ABA-insensitive phenotype of asp1-1. Expression of ABI5 and MYB3o target genes was attenuated in asp^-I and our genetic analyses revealed that ASP1 may function upstream of ABI5 and MYB3o.展开更多
基金Project supports from the National Science Foundation of China(No.51134024)the National High Technology Research and development Program of China(No.2012AA062203)are acknowledged
文摘To position personnel in mines, the study discussed in this paper built on the tunnel personnel positioning method on the basis of both TOA and location-finger print(LFP) positioning. Given non-line of sight(NLOS) time delay in signal transmission caused by facilities and equipment shielding in tunnels and TOA measurement errors in both LFP database data and real-time data, this paper puts forth a database data de-noising algorithm based on distance threshold limitation and modified mean filtering(MMF), as well as a real-time data suppression algorithm based on speed threshold limitation and MMF.On this basis, a nearest neighboring data matching algorithm based on historical location and the speed threshold limitation is used to estimate personnel location and realize accurate personnel positioning.The results from both simulation and the experiment suggest that: compared with the basic LFP positioning method and the method that only suppresses real-time data error, the tunnel personnel positioning methods based on TOA and modified LFP positioning permits effectively eliminating error in TOA measurement, making the measured data close to the true positional data, and dropping the positioning error:the maximal positioning error in measurements from experiment drops by 9 and 3 m, respectively, and the positioning accuracy of 3 m is achievable in the condition used in the experiment.
基金the Himalayan Cryosphere, Climate and Disaster Research Center (HiCCDRC), Kathmandu University for constant support throughout the researchfunded by The Second Tibetan Plateau Scientific Expedition and Research Program (STEP)(Grant No. 2019QZKK0904)+3 种基金supported by the Comprehensive Investigation and Assessment of Natural Hazards in China-Pakistan Economic Corridor (Grant No. 2018FY100500)Ministry of Science and Technology Basic Resources Survey Project (2018FY100506)International Science andTechnology Cooperation Program of China (No. 2018YFE0100100)the National Natural Science Foundation of China (41925030 and 41661144028)
文摘The multi-model assessment of glacio-hydrological regimes can enhance our understanding of glacier response to climate change.This improved knowledge can uplift our computing abilities to estimate the contributing components of the river discharge.This study examined and compared the hydrological responses in the glacier-dominated Shigar River basin(SRB)under various climatic scenarios using a semi-distributed Modified Positive Degree Day Model(MPDDM)and a distributed Glacio-hydrological Degree-day Model(GDM).Both glacio-hydrological models were calibrated and validated against the observed hydro-meteorological data from 1988–1992 and 1993–1997.Temperature and precipitation data from Shigar and Skardu meteorological stations were used along with field estimated degree-day factor,temperature,and precipitation gradients.The results from both models indicate that the snow and ice melt are vital contributors to sustain river flow in the catchment.However,MPDDM estimated 68%of rain and baseflow contribution to annual river runoff despite low precipitation during the summer monsoon,while GDM estimated 14%rain and baseflow contribution.Likewise,MPDDM calculated 32%,and GDM generated 86%of the annual river runoff from snow and ice melt.MPDDM simulated river discharge with 0.86 and 0.78 NSE for calibration and validation,respectively.Similarly,GDM simulated river discharge with improved accuracy of 0.87 for calibration and 0.84 NSE for the validation period.The snow and ice melt is significant in sustaining river flow in the SRB,and substantial changes in melt characteristics of snow and ice are expected to have severe consequences on seasonal water availability.Based on the sensitivity analysis,both models’outputs are highly sensitive to the variation in temperature.Furthermore,compared to MPDDM,GDM simulated considerable variation in the river discharge in climate scenarios,RCP4.5 and 8.5,mainly due to the higher sensitivity of GDM model outputs to temperature change.The integration of an updated melt module and two reservoir baseflow module in GDM is anticipated to advance the representation of hydrological components,unlike one reservoir baseflow module used separately in MPDDM.The restructured melt and baseflow modules in GDM have fundamentally enriched our perception of glacio-hydrological dynamics in the catchment.
基金National Natural Science Foundation of China(No.51205217)the Project of Shandong Province Higher Educational Science and Technology Program,China(No.J10LD13)+1 种基金the Taishan Scholar Project of Shandong Province,China(No.ts 201511038)the Key Research Project of Shandong Province,China(No.2016ZDJS02A15)
文摘In rotational incremental sheet forming( RISF) process,the friction heating of rotational tool could lead to local temperature rise of the sheet and cause the improvement of sheet's formability.Lightweight metal,such as magnesium alloy,could be deformed by RISF without additional heating. The objective of this study is to investigate the effects of forming parameters,namely,tool rotational speed,feed-rate,step size and wall angle,on the local temperature rise. Using response surface methodology and central composite design( CCD) experimental design,the significance,sequence of parameters and regression models would be analyzed with AZ31 B as the experimental material,and 3D response surface plots would be shown. Combined with actual processing conditions,the measures to improve the local temperature rise by modifying each parameter would be discussed in the end. The results showed that hierarchy of the parameters with respect to the significance of their effects on the local temperature at the side wall was: feed-rate,step size,and rotational speed,while at the bottom it was: feed-rate,step size,wall angle, and rotational speed, and no significant interaction appeared. It was found that the most significant parameter was not rotational speed,but feed-rate,followed by step size,for both test positions. In addition, the local temperature would increase by elevating step size,wall angle,rotating rate,and bringing down of feed-rate.
基金financially supported by the National Natural Science Foundation of China(Nos.22271116 and 22071079 for M.W)Jilin Provincial Science and Technology Department(No.20230101027JC for M.W.)the fellowship of China Postdoctoral Science Foundation(No.2021M701383 for J.S)。
文摘The stable coordinated metallo-complexes based on 2,2′:6′,2″-terpyridine(tpy)and its derivatives have been widely researched for various wide-ranging applications in photoelectronics,catalysis,sensor,photoluminescence,and so on.However,the most reported studies ignored the comprehensive comparison between structures modified by different positions and photoluminescence.Herein,we design a series of metallo-complexes which were assembled with tpy substituted triphenylamine(TPA)at different positions and metal ions and explored their photophysical properties.In the solution state,MLE_(2)based on the 5,5″-positions modification showed the highest PLQYs and PL intensity.With the increase of solvent polarity,MLB2exhibit the largest redshift.In the solid state,from MLA_(2)to MLE_(2),the emission colours are gradually red-shifted from yellow to red.The findings in this work may pave a new way to design functional metallo-complexes,not just for PL properties.
基金supported by grants from the National Natural Science Foundation of China(31670186)the Chinese Academy of Sciences(XDA08010105)
文摘The small ubiquitin-related modifier (SUMO) modification plays an important role in the regulation of abscisic acid (ABA) signaling, but the function of the SUMO protease, in ABA signaling, remains largely unknown. Here, we show that the SUMO protease, ASPI positively regulates ABA signaling. Mutations in ASPI resulted in an ABA-insensitive phenotype, during early seedling develop- ment. Wild-type ASP1 successfully rescued, whereas an ASPI mutant (C577S), defective in SUMO protease activity, failed to rescue, the ABA-insensitive phenotype of asp1-1. Expression of ABI5 and MYB3o target genes was attenuated in asp^-I and our genetic analyses revealed that ASP1 may function upstream of ABI5 and MYB3o.