BACKGROUND Although en bloc dissection of hepatic hilum lymph nodes has many advantages in radical tumor treatment,the feasibility and safety of this approach for laparo-scopic pancreaticoduodenectomy(LPD)require furt...BACKGROUND Although en bloc dissection of hepatic hilum lymph nodes has many advantages in radical tumor treatment,the feasibility and safety of this approach for laparo-scopic pancreaticoduodenectomy(LPD)require further clinical evaluation and investigation.AIM To explore the application value of the"five steps four quadrants"modularized en bloc dissection technique for accessing hepatic hilum lymph nodes in LPD patients.METHODS A total of 52 patients who underwent LPD via the"five steps four quadrants"modularized en bloc dissection technique for hepatic hilum lymph nodes from April 2021 to July 2023 in our department were analyzed retrospectively.The patients'body mass index(BMI),preoperative laboratory indices,intraoperative variables and postoperative complications were recorded.The relationships between preoperative data and intraoperative lymph node dissection time and blood loss were also analyzed.RESULTS Among the 52 patients,36 were males and 16 were females,and the average age was 62.2±11.0 years.There were 26 patients with pancreatic head cancer,16 patients with periampullary cancer,and 10 patients with distal bile duct cancer.The BMI was 22.3±3.3 kg/m²,and the median total bilirubin(TBIL)concentration was 57.7(16.0-155.7)µmol/L.All patients successfully underwent the"five steps four quadrants"modularized en bloc dissection technique without lymph node clearance-related complications such as postoperative bleeding or lymphatic leakage.Correlation analysis revealed significant associations between preoperative BMI(r=0.3581,P=0.0091),TBIL level(r=0.2988,P=0.0341),prothrombin time(r=0.3018,P=0.0297)and lymph node dissection time.Moreover,dissection time was significantly correlated with intraoperative blood loss(r=0.7744,P<0.0001).Further stratified analysis demonstrated that patients with a preoperative BMI≥21.9 kg/m²and a TIBL concentration≥57.7μmol/L had significantly longer lymph node dissection times(both P<0.05).CONCLUSION The"five steps four quadrants"modularized en bloc dissection technique for accessing the hepatic hilum lymph node is safe and feasible for LPD.This technique is expected to improve the efficiency of hepatic hilum lymph node dissection and shorten the learning curve;thus,it is worthy of further clinical promotion and application.展开更多
The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular sy...The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular systems, we introduce a modular reconfigurable flight array(MRFA) to pursue a multifunction aircraft fitting for diverse tasks and requirements,and investigate the attitude control and the control allocation problem by using the modular reconfigurable flight array as a platform. First, considering the variable and irregular topological configuration of the modular array, a center-of-mass-independent flight array dynamics model is proposed to allow control allocation under over-actuated situations. Secondly, in order to meet the stable, fast and accurate attitude tracking performance of the MRFA, a fixed-time convergent sliding mode controller with state-dependent variable exponent coefficients is proposed to ensure fast convergence rate both away from and near the system equilibrium point without encountering the singularity. It is shown that the controller also has fixed-time convergent characteristics even in the presence of external disturbances. Finally,simulation results are provided to demonstrate the effectiveness of the proposed modeling and control strategies.展开更多
Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced ...Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced image acquisition techniques,image processing,and computer-aided design methods has enabled the precise design and additive manufacturing of anatomically correct and patient-specific implants and scaffolds.However,these sophisticated techniques can be timeconsuming,labor-intensive,and expensive.Moreover,the necessary imaging and manufacturing equipment may not be readily available when urgent treatment is needed for trauma patients.In this study,a novel design and AM methods are proposed for the development of modular and customizable scaffold blocks that can be adapted to fit the bone defect area of a patient.These modular scaffold blocks can be combined to quickly form any patient-specific scaffold directly from two-dimensional(2D)medical images when the surgeon lacks access to a 3D printer or cannot wait for lengthy 3D imaging,modeling,and 3D printing during surgery.The proposed method begins with developing a bone surface-modeling algorithm that reconstructs a model of the patient’s bone from 2D medical image measurements without the need for expensive 3D medical imaging or segmentation.This algorithm can generate both patient-specific and average bone models.Additionally,a biomimetic continuous path planning method is developed for the additive manufacturing of scaffolds,allowing porous scaffold blocks with the desired biomechanical properties to be manufactured directly from 2D data or images.The algorithms are implemented,and the designed scaffold blocks are 3D printed using an extrusion-based AM process.Guidelines and instructions are also provided to assist surgeons in assembling scaffold blocks for the self-repair of patient-specific large bone defects.展开更多
Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes ametho...Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes amethod developed to fabricate modular three-dimensional(3D)paper-based microfluidic chips based on projection-based 3D printing(PBP)technology.A series of two-dimensional(2D)paper-based microfluidic modules was designed and fabricated.After evaluating the effect of exposure time on the accuracy of the flow channel,the resolution of this channel was experimentally analyzed.Furthermore,several 3D paper-based microfluidic chips were assembled based on the 2D ones using different methods,with good channel connectivity.Scaffold-based 2D and hydrogel-based 3D cell culture systems based on 3D paper-based microfluidic chips were verified to be feasible.Furthermore,by combining extrusion 3D bioprinting technology and the proposed 3D paper-based microfluidic chips,multiorgan microfluidic chips were established by directly printing 3D hydrogel structures on 3D paperbased microfluidic chips,confirming that the prepared modular 3D paper-based microfluidic chip is potentially applicable in various biomedical applications.展开更多
Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e...Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.展开更多
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ...The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.展开更多
How can individual mobility in urban areas be maintained alongside scooters and cargo bikes if conventional vehicles are foreseeably no longer allowed to enter city centers?And how can urban living be combined with in...How can individual mobility in urban areas be maintained alongside scooters and cargo bikes if conventional vehicles are foreseeably no longer allowed to enter city centers?And how can urban living be combined with individual mobility in a sustainable and socially acceptable way?LiMo-2040 attempts to provide answers to these questions.It follows a holistic approach according to the criteria:As light,as compact and as simple(cost-effective)as possible.Modular e-vehicle concepts(consisting of vehicle cabin and chassis)are known,but have not yet been thought through to their logical conclusion.The LiMo cabin is not only a vehicle cabin,but also a component of a modern high-rise apartment.It therefore requires no parking space and combines urban living and individual mobility sustainably and cost-effectively.If a vehicle is needed,an app can be used to book a chassis that comes along autonomously and waits until the cabin,including its occupants,travels down a sophisticated rail system,docks and autonomously heads for the desired destination.展开更多
Reconfigurable modular robots feature high mobility due to their unconstrained connection manners.Inspired by the snake multi-joint crawling principle,a chain-type reconfigurable modular robot(CRMR)is designed,which c...Reconfigurable modular robots feature high mobility due to their unconstrained connection manners.Inspired by the snake multi-joint crawling principle,a chain-type reconfigurable modular robot(CRMR)is designed,which could reassemble into various configurations through the compound joint motion.Moreover,an illumination adaptive modular robot identification(IAMRI)algorithm is proposed for CRMR.At first,an adaptive threshold is applied to detect oriented FAST features in the robot image.Then,the effective detection of features in non-uniform illumination areas is achieved through an optimized quadtree decomposition method.After matching features,an improved random sample consensus algorithm is employed to eliminate the mismatched features.Finally,the reconfigurable robot module is identified effectively through the perspective transformation.Compared with ORB,MA,Y-ORB,and S-ORB algorithms,the IAMRI algorithm has an improvement of over 11.6%in feature uniformity,and 13.7%in the comprehensive indicator,respectively.The IAMRI algorithm limits the relative error within 2.5 pixels,efficiently completing the CRMR identification under complex environmental changes.展开更多
Vocational education plays a vital role in the development of skilled technical professionals and the advancement of the economy.However,the emphasis on campus education often neglects the importance of external train...Vocational education plays a vital role in the development of skilled technical professionals and the advancement of the economy.However,the emphasis on campus education often neglects the importance of external training,hindering the overall development of vocational education.This study aims to address this issue by exploring the design and development of small modular courses that integrate training and education in vocational colleges,focusing on the mechanics course as a case study.The research methods employed in this study include an in-depth analysis of enterprise training needs,the development of digital teaching resources utilizing the finite element method(FEM),and the implementation of a small modular course integrating education and training.The data analysis reveals positive outcomes in terms of learners’comprehension and engagement with complex mechanics formulas through the use of stress nephograms and other digital resources.This research provides a new perspective on curriculum design and offers insights into the integration of training and education in vocational colleges.The findings underscore the significance of incorporating innovative teaching methodologies and digital resources in enhancing the quality and relevance of vocational education,ultimately contributing to the cultivation of skilled professionals and the growth of the vocational education sector.展开更多
As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its applic...As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its application to the design of an assembled teaching building project will comprehensively improve the rationality of the teaching building and component design.The paper focuses on the application of modular design thinking in assembled teaching building design,aiming to provide references for China’s architectural design units,giving full play to the advantages of modular design thinking in future teaching building design projects,and enhancing the level of design,for the construction of the teaching building and the basis of the technical guarantee.展开更多
A new modular solution to the state explosion problem caused by the Markov-based modular solution of dynamic multiple-phased systems is proposed. First, the solution makes full use of the static parts of dynamic multi...A new modular solution to the state explosion problem caused by the Markov-based modular solution of dynamic multiple-phased systems is proposed. First, the solution makes full use of the static parts of dynamic multiple-phased systems and constructs cross-phase dynamic modules by combining the dynamic modules of phase fault trees. Secondly, the system binary decision diagram (BDD) from a modularized multiple- phased system (MPS)is generated by using variable ordering and BDD operations. The computational formulations of the BDD node event probability are derived for various node links and the system reliability results are figured out. Finally, a hypothetical multiple-phased system is given to demonstrate the advantages of the dynamic modular solution when the Markov state space and the size of the system BDD are reduced.展开更多
Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical app...Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical approach is proposed to solve the resource allocation problem for IMA systems in distributed environments. Firstly, the worst case response time of tasks with arbitrary deadlines is analyzed for the two-level scheduler. Then, the hierarchical resource allocation approach is presented in two levels. At the platform level, a task assignment algorithm based on genetic simulated annealing (GSA) is proposed to assign a set of pre-defined tasks to different processing nodes in the form of task groups, so that resources can be allocated as partitions and mapped to task groups. While yielding to all the resource con- straints, the algorithm tries to find an optimal task assignment with minimized communication costs and balanced work load. At the node level, partition parameters are optimized, so that the computational resource can be allocated further. An example is shown to illustrate the hierarchal resource allocation approach and manifest the validity. Simulation results comparing the performance of the proposed GSA with that of traditional genetic algorithms are presented in the context of task assignment in IMA systems.展开更多
4-Bromo-3-methylanisole is mainly used to synthesize black fluorane dye(2-anilino-3-methyl-6-dibutylaminofluorane, ODB-2), which is one of the most important heat and pressure-sensitive dyes in the manufacture of ther...4-Bromo-3-methylanisole is mainly used to synthesize black fluorane dye(2-anilino-3-methyl-6-dibutylaminofluorane, ODB-2), which is one of the most important heat and pressure-sensitive dyes in the manufacture of thermal papers. Compared to the industrial heterogeneous batch process, a continuous homogeneous bromination technology in a modular microreaction system has been developed, and 4-bromo-3-methylanisole has been successfully prepared through high-selective mono-bromination of 3-methylanisole with Br2 solution in CHCl3. In optimal conditions, the content of bis-brominated byproducts can be controlled less than 0.5%,which is superior to the industrial standard with 99.5% 3-methylanisole conversion at very short residence time and mild reaction temperature.展开更多
Objective:To investigate the efficacy and patient satisfaction of the EarWell Infant Ear Correction System combined with modular parents'nursing education's curative effect on deformed auricle.Methods:A total ...Objective:To investigate the efficacy and patient satisfaction of the EarWell Infant Ear Correction System combined with modular parents'nursing education's curative effect on deformed auricle.Methods:A total of 42 patients(29 boys and 13 girls;73 ears;age≤3 months)with auricle deformities who had received EarWell Infant Ear Correction System's treatment and modular parents'nursing education in Guangzhou Children and Women's Medical Center between April and October 2018.The modular parents'education program is standardized by EarWell system.Physician and patients'parents compared the severity of auricle deformity separately before and after the treatment by using the auricle deformities visual analogue scales(VAS)rating system.Patient satisfaction was evaluated by using global aesthetic improvement scale(GAIS).The data collected of auricle deformities VAS and GAIS satisfaction score were applied to measure the treatment's effectiveness.Results:All the 42 patients(73 external ears)completed the treatment with EarWell Infant Ear Correction System and modular parents'nursing education.The mean age at initiation of treatment was 37.87±19.44 days and the therapeutic time span was 47.21±17.36 days.At the end of treatment,the physician's and patients'guardians rating of the severity of auricle deformity were significantly improved separately compared to the initial rating(8.33±1.27 vs.6.51±0.84;P<0.005)(5.77±1.59 vs.8.19±2.38 P<0.05).During the treatment and parents'home nursing care period,the side effect and complications were minor like skin eczema and irrigation;there were no severe complications such as necrosis of the skin and cartilage.The patient tolerance for the treatment was acceptable with the adequate parents'nursing care.Most patients'guardians were satisfied with the treatment outcomes of EarWell Infant Ear Correction System with more engagement of nursing care,the GAIS's rating were increased from pretreatment stage's 26.19%to treatment completed stage's 90.48%,and the difference was statistically significant(P<0.05).Conclusions:In this study,we proved that EarWell Infant Ear Correction System with its unique parents'modular nursing care education,as a noninvasive treatment,reasonably improved auricle morphological malformation,and patients'guardians satisfaction with few complications,which is worthy of a wildly clinical promotion.展开更多
Big data on product sales are an emerging resource for supporting modular product design to meet diversified customers’requirements of product specification combinations.To better facilitate decision-making of modula...Big data on product sales are an emerging resource for supporting modular product design to meet diversified customers’requirements of product specification combinations.To better facilitate decision-making of modular product design,correlations among specifications and components originated from customers’conscious and subconscious preferences can be investigated by using big data on product sales.This study proposes a framework and the associated methods for supporting modular product design decisions based on correlation analysis of product specifications and components using big sales data.The correlations of the product specifications are determined by analyzing the collected product sales data.By building the relations between the product components and specifications,a matrix for measuring the correlation among product components is formed for component clustering.Six rules for supporting the decision making of modular product design are proposed based on the frequency analysis of the specification values per component cluster.A case study of electric vehicles illustrates the application of the proposed method.展开更多
To solve the existing problems during the ceramic mold enterprises product design and development process, the variable structure parametric design system based on modular of ceramic mold has been developed. The syste...To solve the existing problems during the ceramic mold enterprises product design and development process, the variable structure parametric design system based on modular of ceramic mold has been developed. The system uses the object-oriented technology and top-down design concept as a guide, establishes a ceramic mold parametric design process, divides the process of ceramic mold design into modules of different levels and creates a component model library based on the functional analysis. Expanding modular thinking to parts structure design level is an effective solution to the difficulty of changing the structure during the product design process. Examples show that the system can achieve a ceramic mold product design, improve design efficiency.展开更多
This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly m...This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly mounted on a shared platform with both horizontally and vertically interlaced modules.Each module consists of a moderate/flexible number of array elements with the inter-element distance typically in the order of the signal wavelength,while different modules are separated by the relatively large inter-module distance for convenience of practical deployment.By accurately modelling the signal amplitudes and phases,as well as projected apertures across all modular elements,we analyse the near-field signal-to-noise ratio(SNR)performance for modular XL-array communications.Based on the non-uniform spherical wave(NUSW)modelling,the closed-form SNR expression is derived in terms of key system parameters,such as the overall modular array size,distances of adjacent modules along all dimensions,and the user's three-dimensional(3D)location.In addition,with the number of modules in different dimensions increasing infinitely,the asymptotic SNR scaling laws are revealed.Furthermore,we show that our proposed near-field modelling and performance analysis include the results for existing array architectures/modelling as special cases,e.g.,the collocated XL-array architecture,the uniform plane wave(UPW)based far-field modelling,and the modular extremely large-scale uniform linear array(XL-ULA)of onedimension.Extensive simulation results are presented to validate our findings.展开更多
This paper studies a fault-tolerant control system for a space modular manipulator system mounted on space station or other spacecrafts such as satellites, located in low earth orbit. Design technologies for tradition...This paper studies a fault-tolerant control system for a space modular manipulator system mounted on space station or other spacecrafts such as satellites, located in low earth orbit. Design technologies for traditional industrial manipulator systems cannot be directly used to the space ones due to the special space environment and compactness. Considering the extremely tight constraints on mass, power consumption, volume, cost and "design-to-orbit" schedules, the fault-tolerant control system is developed mainly based on commercial-off-the-shaft components. The features of the hardware and software of the fault-tolerant control system are presented. The performance specifications are also discussed. Because many space proven design technologies and experiences are adopted, the fault-tolerant control system is characterized by high reliability and practicability.展开更多
In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich ass...In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich assembly mode which consists of the isomorphic module structure and the standard mechanical-electric-data-thermal interfaces.The advantages of the sandwich assembly mode include flexible reconfiguration and efficient assembly.The prototype of the sandwich assembly mode is built for verifying the performance and the feasibility of the proposed mechanical-electric-data-thermal interfaces.Finally,an assembly case is accomplished to demonstrate the validity and advantages of the proposed“Tetris”microsatellite platform.展开更多
Modularized circuit designs for chaotic systems are introduced in this paper.Especially,a typical improved modularized design strategy is proposed and applied to a new hyper-chaotic system circuit implementation.In th...Modularized circuit designs for chaotic systems are introduced in this paper.Especially,a typical improved modularized design strategy is proposed and applied to a new hyper-chaotic system circuit implementation.In this paper,the detailed design procedures are described.Multisim simulations and physical experiments are conducted,and the simulation results are compared with Matlab simulation results for different system parameter pairs.These results are consistent with each other and they verify the existence of the hyper-chaotic attractor for this new hyper-chaotic system.展开更多
基金Supported by Health Research Program of Anhui,No.AHWJ2022b032。
文摘BACKGROUND Although en bloc dissection of hepatic hilum lymph nodes has many advantages in radical tumor treatment,the feasibility and safety of this approach for laparo-scopic pancreaticoduodenectomy(LPD)require further clinical evaluation and investigation.AIM To explore the application value of the"five steps four quadrants"modularized en bloc dissection technique for accessing hepatic hilum lymph nodes in LPD patients.METHODS A total of 52 patients who underwent LPD via the"five steps four quadrants"modularized en bloc dissection technique for hepatic hilum lymph nodes from April 2021 to July 2023 in our department were analyzed retrospectively.The patients'body mass index(BMI),preoperative laboratory indices,intraoperative variables and postoperative complications were recorded.The relationships between preoperative data and intraoperative lymph node dissection time and blood loss were also analyzed.RESULTS Among the 52 patients,36 were males and 16 were females,and the average age was 62.2±11.0 years.There were 26 patients with pancreatic head cancer,16 patients with periampullary cancer,and 10 patients with distal bile duct cancer.The BMI was 22.3±3.3 kg/m²,and the median total bilirubin(TBIL)concentration was 57.7(16.0-155.7)µmol/L.All patients successfully underwent the"five steps four quadrants"modularized en bloc dissection technique without lymph node clearance-related complications such as postoperative bleeding or lymphatic leakage.Correlation analysis revealed significant associations between preoperative BMI(r=0.3581,P=0.0091),TBIL level(r=0.2988,P=0.0341),prothrombin time(r=0.3018,P=0.0297)and lymph node dissection time.Moreover,dissection time was significantly correlated with intraoperative blood loss(r=0.7744,P<0.0001).Further stratified analysis demonstrated that patients with a preoperative BMI≥21.9 kg/m²and a TIBL concentration≥57.7μmol/L had significantly longer lymph node dissection times(both P<0.05).CONCLUSION The"five steps four quadrants"modularized en bloc dissection technique for accessing the hepatic hilum lymph node is safe and feasible for LPD.This technique is expected to improve the efficiency of hepatic hilum lymph node dissection and shorten the learning curve;thus,it is worthy of further clinical promotion and application.
基金supported by the National Nature Science Foundation of China (62063011,62273169, 61922037, 61873115)Yunnan Fundamental Research Projects(202001AV070001)+1 种基金Yunnan Major Scientific and Technological Projects(202202AG050002)partially supported by the Open Foundation of Key Laboratory in Software Engineering of Yunnan Province (2020SE502)。
文摘The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular systems, we introduce a modular reconfigurable flight array(MRFA) to pursue a multifunction aircraft fitting for diverse tasks and requirements,and investigate the attitude control and the control allocation problem by using the modular reconfigurable flight array as a platform. First, considering the variable and irregular topological configuration of the modular array, a center-of-mass-independent flight array dynamics model is proposed to allow control allocation under over-actuated situations. Secondly, in order to meet the stable, fast and accurate attitude tracking performance of the MRFA, a fixed-time convergent sliding mode controller with state-dependent variable exponent coefficients is proposed to ensure fast convergence rate both away from and near the system equilibrium point without encountering the singularity. It is shown that the controller also has fixed-time convergent characteristics even in the presence of external disturbances. Finally,simulation results are provided to demonstrate the effectiveness of the proposed modeling and control strategies.
文摘Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced image acquisition techniques,image processing,and computer-aided design methods has enabled the precise design and additive manufacturing of anatomically correct and patient-specific implants and scaffolds.However,these sophisticated techniques can be timeconsuming,labor-intensive,and expensive.Moreover,the necessary imaging and manufacturing equipment may not be readily available when urgent treatment is needed for trauma patients.In this study,a novel design and AM methods are proposed for the development of modular and customizable scaffold blocks that can be adapted to fit the bone defect area of a patient.These modular scaffold blocks can be combined to quickly form any patient-specific scaffold directly from two-dimensional(2D)medical images when the surgeon lacks access to a 3D printer or cannot wait for lengthy 3D imaging,modeling,and 3D printing during surgery.The proposed method begins with developing a bone surface-modeling algorithm that reconstructs a model of the patient’s bone from 2D medical image measurements without the need for expensive 3D medical imaging or segmentation.This algorithm can generate both patient-specific and average bone models.Additionally,a biomimetic continuous path planning method is developed for the additive manufacturing of scaffolds,allowing porous scaffold blocks with the desired biomechanical properties to be manufactured directly from 2D data or images.The algorithms are implemented,and the designed scaffold blocks are 3D printed using an extrusion-based AM process.Guidelines and instructions are also provided to assist surgeons in assembling scaffold blocks for the self-repair of patient-specific large bone defects.
基金sponsored by the National Natural Science Foundation ofChina(No.52235007,YH)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.T2121004,YH)+3 种基金the NationalNatural Science Foundation of China(No.52305300,MJX)the Fellowship of China Postdoctoral Science Foundation(No.2022M722826,MJX)the National Natural Science Foundation of China(No.82203602,JW)the Zhejiang Provincial Natural Science Foundation of China(No.LQ22H160020,JW)。
文摘Paper-based microchips have different advantages,such as better biocompatibility,simple production,and easy handling,making them promising candidates for clinical diagnosis and other fields.This study describes amethod developed to fabricate modular three-dimensional(3D)paper-based microfluidic chips based on projection-based 3D printing(PBP)technology.A series of two-dimensional(2D)paper-based microfluidic modules was designed and fabricated.After evaluating the effect of exposure time on the accuracy of the flow channel,the resolution of this channel was experimentally analyzed.Furthermore,several 3D paper-based microfluidic chips were assembled based on the 2D ones using different methods,with good channel connectivity.Scaffold-based 2D and hydrogel-based 3D cell culture systems based on 3D paper-based microfluidic chips were verified to be feasible.Furthermore,by combining extrusion 3D bioprinting technology and the proposed 3D paper-based microfluidic chips,multiorgan microfluidic chips were established by directly printing 3D hydrogel structures on 3D paperbased microfluidic chips,confirming that the prepared modular 3D paper-based microfluidic chip is potentially applicable in various biomedical applications.
基金Supported by National Key Research and Development Program of China (Grant Nos.2022YFB4703000,2019YFB1309900)。
文摘Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.
基金The Construction S&T Project of the Department of Transportation of Sichuan Province(Grant No.2023A02)the National Natural Science Foundation of China(No.52109135).
文摘The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.
文摘How can individual mobility in urban areas be maintained alongside scooters and cargo bikes if conventional vehicles are foreseeably no longer allowed to enter city centers?And how can urban living be combined with individual mobility in a sustainable and socially acceptable way?LiMo-2040 attempts to provide answers to these questions.It follows a holistic approach according to the criteria:As light,as compact and as simple(cost-effective)as possible.Modular e-vehicle concepts(consisting of vehicle cabin and chassis)are known,but have not yet been thought through to their logical conclusion.The LiMo cabin is not only a vehicle cabin,but also a component of a modern high-rise apartment.It therefore requires no parking space and combines urban living and individual mobility sustainably and cost-effectively.If a vehicle is needed,an app can be used to book a chassis that comes along autonomously and waits until the cabin,including its occupants,travels down a sophisticated rail system,docks and autonomously heads for the desired destination.
基金supported by the National Key R&D Program of China(Grant No.2018YFB1304600)the National Natural Science Foundation of China(Grant No.62003337)+1 种基金the Open Fund for State Key Laboratory of Robotics(Grant No.2023O03)the Liaoning Province Joint Open Fund for Key Scientific and Technological Innovation Bases(Grant No.2021-KF-12-05).
文摘Reconfigurable modular robots feature high mobility due to their unconstrained connection manners.Inspired by the snake multi-joint crawling principle,a chain-type reconfigurable modular robot(CRMR)is designed,which could reassemble into various configurations through the compound joint motion.Moreover,an illumination adaptive modular robot identification(IAMRI)algorithm is proposed for CRMR.At first,an adaptive threshold is applied to detect oriented FAST features in the robot image.Then,the effective detection of features in non-uniform illumination areas is achieved through an optimized quadtree decomposition method.After matching features,an improved random sample consensus algorithm is employed to eliminate the mismatched features.Finally,the reconfigurable robot module is identified effectively through the perspective transformation.Compared with ORB,MA,Y-ORB,and S-ORB algorithms,the IAMRI algorithm has an improvement of over 11.6%in feature uniformity,and 13.7%in the comprehensive indicator,respectively.The IAMRI algorithm limits the relative error within 2.5 pixels,efficiently completing the CRMR identification under complex environmental changes.
基金General Project of the 13th Five Year Plan for Education Science in Beijing in 2020“Key Elements of Vocational Education and Training System Construction in Higher Vocational Colleges”(Grant No.CCDB2020135)。
文摘Vocational education plays a vital role in the development of skilled technical professionals and the advancement of the economy.However,the emphasis on campus education often neglects the importance of external training,hindering the overall development of vocational education.This study aims to address this issue by exploring the design and development of small modular courses that integrate training and education in vocational colleges,focusing on the mechanics course as a case study.The research methods employed in this study include an in-depth analysis of enterprise training needs,the development of digital teaching resources utilizing the finite element method(FEM),and the implementation of a small modular course integrating education and training.The data analysis reveals positive outcomes in terms of learners’comprehension and engagement with complex mechanics formulas through the use of stress nephograms and other digital resources.This research provides a new perspective on curriculum design and offers insights into the integration of training and education in vocational colleges.The findings underscore the significance of incorporating innovative teaching methodologies and digital resources in enhancing the quality and relevance of vocational education,ultimately contributing to the cultivation of skilled professionals and the growth of the vocational education sector.
文摘As an efficient,environmentally friendly,energy-saving construction method,assembled buildings are now widely used in campus building construction.Modular design thinking is system-based design thinking,and its application to the design of an assembled teaching building project will comprehensively improve the rationality of the teaching building and component design.The paper focuses on the application of modular design thinking in assembled teaching building design,aiming to provide references for China’s architectural design units,giving full play to the advantages of modular design thinking in future teaching building design projects,and enhancing the level of design,for the construction of the teaching building and the basis of the technical guarantee.
基金The National Natural Science Foundation of China(No.60903011)the Natural Science Foundation of Jiangsu Province(No.BK2009267)
文摘A new modular solution to the state explosion problem caused by the Markov-based modular solution of dynamic multiple-phased systems is proposed. First, the solution makes full use of the static parts of dynamic multiple-phased systems and constructs cross-phase dynamic modules by combining the dynamic modules of phase fault trees. Secondly, the system binary decision diagram (BDD) from a modularized multiple- phased system (MPS)is generated by using variable ordering and BDD operations. The computational formulations of the BDD node event probability are derived for various node links and the system reliability results are figured out. Finally, a hypothetical multiple-phased system is given to demonstrate the advantages of the dynamic modular solution when the Markov state space and the size of the system BDD are reduced.
基金supported by the National Natural Science Foundation of China (60879024)
文摘Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical approach is proposed to solve the resource allocation problem for IMA systems in distributed environments. Firstly, the worst case response time of tasks with arbitrary deadlines is analyzed for the two-level scheduler. Then, the hierarchical resource allocation approach is presented in two levels. At the platform level, a task assignment algorithm based on genetic simulated annealing (GSA) is proposed to assign a set of pre-defined tasks to different processing nodes in the form of task groups, so that resources can be allocated as partitions and mapped to task groups. While yielding to all the resource con- straints, the algorithm tries to find an optimal task assignment with minimized communication costs and balanced work load. At the node level, partition parameters are optimized, so that the computational resource can be allocated further. An example is shown to illustrate the hierarchal resource allocation approach and manifest the validity. Simulation results comparing the performance of the proposed GSA with that of traditional genetic algorithms are presented in the context of task assignment in IMA systems.
基金financial support from National Key R&D Program of China(2017YFB0307102)National Natural Science Foundation of China(21991100,21991104)。
文摘4-Bromo-3-methylanisole is mainly used to synthesize black fluorane dye(2-anilino-3-methyl-6-dibutylaminofluorane, ODB-2), which is one of the most important heat and pressure-sensitive dyes in the manufacture of thermal papers. Compared to the industrial heterogeneous batch process, a continuous homogeneous bromination technology in a modular microreaction system has been developed, and 4-bromo-3-methylanisole has been successfully prepared through high-selective mono-bromination of 3-methylanisole with Br2 solution in CHCl3. In optimal conditions, the content of bis-brominated byproducts can be controlled less than 0.5%,which is superior to the industrial standard with 99.5% 3-methylanisole conversion at very short residence time and mild reaction temperature.
文摘Objective:To investigate the efficacy and patient satisfaction of the EarWell Infant Ear Correction System combined with modular parents'nursing education's curative effect on deformed auricle.Methods:A total of 42 patients(29 boys and 13 girls;73 ears;age≤3 months)with auricle deformities who had received EarWell Infant Ear Correction System's treatment and modular parents'nursing education in Guangzhou Children and Women's Medical Center between April and October 2018.The modular parents'education program is standardized by EarWell system.Physician and patients'parents compared the severity of auricle deformity separately before and after the treatment by using the auricle deformities visual analogue scales(VAS)rating system.Patient satisfaction was evaluated by using global aesthetic improvement scale(GAIS).The data collected of auricle deformities VAS and GAIS satisfaction score were applied to measure the treatment's effectiveness.Results:All the 42 patients(73 external ears)completed the treatment with EarWell Infant Ear Correction System and modular parents'nursing education.The mean age at initiation of treatment was 37.87±19.44 days and the therapeutic time span was 47.21±17.36 days.At the end of treatment,the physician's and patients'guardians rating of the severity of auricle deformity were significantly improved separately compared to the initial rating(8.33±1.27 vs.6.51±0.84;P<0.005)(5.77±1.59 vs.8.19±2.38 P<0.05).During the treatment and parents'home nursing care period,the side effect and complications were minor like skin eczema and irrigation;there were no severe complications such as necrosis of the skin and cartilage.The patient tolerance for the treatment was acceptable with the adequate parents'nursing care.Most patients'guardians were satisfied with the treatment outcomes of EarWell Infant Ear Correction System with more engagement of nursing care,the GAIS's rating were increased from pretreatment stage's 26.19%to treatment completed stage's 90.48%,and the difference was statistically significant(P<0.05).Conclusions:In this study,we proved that EarWell Infant Ear Correction System with its unique parents'modular nursing care education,as a noninvasive treatment,reasonably improved auricle morphological malformation,and patients'guardians satisfaction with few complications,which is worthy of a wildly clinical promotion.
基金National Key R&D Program of China(Grant No.2018YFB1701701)Sailing Talent Program+1 种基金Guangdong Provincial Science and Technologies Program of China(Grant No.2017B090922008)Special Grand Grant from Tianjin City Government of China。
文摘Big data on product sales are an emerging resource for supporting modular product design to meet diversified customers’requirements of product specification combinations.To better facilitate decision-making of modular product design,correlations among specifications and components originated from customers’conscious and subconscious preferences can be investigated by using big data on product sales.This study proposes a framework and the associated methods for supporting modular product design decisions based on correlation analysis of product specifications and components using big sales data.The correlations of the product specifications are determined by analyzing the collected product sales data.By building the relations between the product components and specifications,a matrix for measuring the correlation among product components is formed for component clustering.Six rules for supporting the decision making of modular product design are proposed based on the frequency analysis of the specification values per component cluster.A case study of electric vehicles illustrates the application of the proposed method.
文摘To solve the existing problems during the ceramic mold enterprises product design and development process, the variable structure parametric design system based on modular of ceramic mold has been developed. The system uses the object-oriented technology and top-down design concept as a guide, establishes a ceramic mold parametric design process, divides the process of ceramic mold design into modules of different levels and creates a component model library based on the functional analysis. Expanding modular thinking to parts structure design level is an effective solution to the difficulty of changing the structure during the product design process. Examples show that the system can achieve a ceramic mold product design, improve design efficiency.
基金supported by the National Key R&D Program of China with Grant number 2019YFB1803400the National Natural Science Foundation of China under Grant number 62071114the Fundamental Research Funds for the Central Universities of China under grant numbers 3204002004A2 and 2242022k30005。
文摘This paper investigates the wireless communication with a novel architecture of antenna arrays,termed modular extremely large-scale array(XLarray),where array elements of an extremely large number/size are regularly mounted on a shared platform with both horizontally and vertically interlaced modules.Each module consists of a moderate/flexible number of array elements with the inter-element distance typically in the order of the signal wavelength,while different modules are separated by the relatively large inter-module distance for convenience of practical deployment.By accurately modelling the signal amplitudes and phases,as well as projected apertures across all modular elements,we analyse the near-field signal-to-noise ratio(SNR)performance for modular XL-array communications.Based on the non-uniform spherical wave(NUSW)modelling,the closed-form SNR expression is derived in terms of key system parameters,such as the overall modular array size,distances of adjacent modules along all dimensions,and the user's three-dimensional(3D)location.In addition,with the number of modules in different dimensions increasing infinitely,the asymptotic SNR scaling laws are revealed.Furthermore,we show that our proposed near-field modelling and performance analysis include the results for existing array architectures/modelling as special cases,e.g.,the collocated XL-array architecture,the uniform plane wave(UPW)based far-field modelling,and the modular extremely large-scale uniform linear array(XL-ULA)of onedimension.Extensive simulation results are presented to validate our findings.
基金"863" National High Technology Foundation in Astronautics(2005AA742030)
文摘This paper studies a fault-tolerant control system for a space modular manipulator system mounted on space station or other spacecrafts such as satellites, located in low earth orbit. Design technologies for traditional industrial manipulator systems cannot be directly used to the space ones due to the special space environment and compactness. Considering the extremely tight constraints on mass, power consumption, volume, cost and "design-to-orbit" schedules, the fault-tolerant control system is developed mainly based on commercial-off-the-shaft components. The features of the hardware and software of the fault-tolerant control system are presented. The performance specifications are also discussed. Because many space proven design technologies and experiences are adopted, the fault-tolerant control system is characterized by high reliability and practicability.
基金supported by the National Natural Science Foundation of China(6210333962073261)+1 种基金Shaanxi Natural Science Basic Research Program(2023-JC-YB-569)the Fundamental Research Funds for the Central Universities。
文摘In this paper,a flexible modular“Tetris”microsatellite platform is studied to implement the rapid integration and assembly of microsatellites.The proposed microsatellite platform is fulfilled based on a sandwich assembly mode which consists of the isomorphic module structure and the standard mechanical-electric-data-thermal interfaces.The advantages of the sandwich assembly mode include flexible reconfiguration and efficient assembly.The prototype of the sandwich assembly mode is built for verifying the performance and the feasibility of the proposed mechanical-electric-data-thermal interfaces.Finally,an assembly case is accomplished to demonstrate the validity and advantages of the proposed“Tetris”microsatellite platform.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61403395)the Natural Science Foundation of Tianjin,China(Grant No.13JCYBJC39000)+3 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of Chinathe Fund from the Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation of China(Grant No.104003020106)the National Basic Research Program of China(Grant No.2014CB744904)the Fund for the Scholars of Civil Aviation University of China(Grant No.2012QD21x)
文摘Modularized circuit designs for chaotic systems are introduced in this paper.Especially,a typical improved modularized design strategy is proposed and applied to a new hyper-chaotic system circuit implementation.In this paper,the detailed design procedures are described.Multisim simulations and physical experiments are conducted,and the simulation results are compared with Matlab simulation results for different system parameter pairs.These results are consistent with each other and they verify the existence of the hyper-chaotic attractor for this new hyper-chaotic system.