Aiming at the specific protocol of RFID technology,a 915MHz CMOS transmitter front-end for OOK modulation is implemented in a 0.18μm CMOS process. The transmitter incorporates a class-E power amplifier (PA), a modu...Aiming at the specific protocol of RFID technology,a 915MHz CMOS transmitter front-end for OOK modulation is implemented in a 0.18μm CMOS process. The transmitter incorporates a class-E power amplifier (PA), a modulator, and a control logic unit. The direct-conversion architecture minimizes the required on-and-off-chip components and provides a low-cost and efficient solution. A novel structure is proposed to provide the modulation depth of 100% and 18% ,respectively. The PA presents an output ldB power of 17.6dBm while maintaining a maximum PAE of 35.4%.展开更多
The polymethyl methacrylate (PMMA) film doped with an azo dye ethyl-red (ER) film is employed to demonstrate the properties of an all-optical switch by its photoinduced dichroism and birefringence. We show how to ...The polymethyl methacrylate (PMMA) film doped with an azo dye ethyl-red (ER) film is employed to demonstrate the properties of an all-optical switch by its photoinduced dichroism and birefringence. We show how to enhance remarkably the modulation depth of all-optical switches almost to 100% by using two linear polarization beams: one beam is inclined at 45° with respect to the probing beam and serves as a pumping beam, and the other beam is perpendicular to the probing beam and used as an erasing beam. Furthermore, a maximum-to-minimum output intensity ratio of 2000:1 is achieved in experiment, which is very useful and important for optical storages and image displays.展开更多
The modulation depth, defined according to practical modulation results, which changes with the microwave power and its frequency, is significant for systems utilizing the frequency-shift characteristic of the LiNbO3 ...The modulation depth, defined according to practical modulation results, which changes with the microwave power and its frequency, is significant for systems utilizing the frequency-shift characteristic of the LiNbO3 waveguide Electro-Optic Intensity Modulator (EOIM). By analyzing the impedance mismatch between the microwave source and the EOIM, the effective voltage applied to the RF port of the EOIM is deprived from the microwave power and its frequency. Associating with analyses of the phase velocity mismatch between the microwave and the optical wave, the theoretical modulation depth has been obtained, which is verified by experimental results. We provide a method to choose the appropriate modulation depth to optimize the desired sideband through proper transmission bias for the system based on the frequency-shift characteristic of the EOIM.展开更多
Magnetic fluid is a kind of functional composite material with nanosized structure and unique optical properties. The tunable magneto-optic modulation of magnetic fluid under external magnetic field, achieved by adjus...Magnetic fluid is a kind of functional composite material with nanosized structure and unique optical properties. The tunable magneto-optic modulation of magnetic fluid under external magnetic field, achieved by adjusting the polarization direction of incident light, is investigated theoretically and experimentally in this work. The corresponding modulation depth and response time are obtained. The accompanying mechanisms are clarified by using the theory of dichroism of magtietic fluid and the aggregation/disintegration processes of magnetic particles within magnetic fluid when the external magnetic field turns on/off.展开更多
Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent...Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent,and thermally tunable microwave absorber is proposed,based on a patterned vanadium dioxide(VO_(2))film.Numerical calculations and experiments demonstrate that the proposed VO_(2)absorber has a high optical transmittance of 84.9%at 620 nm;its reflection loss at 15.06 GHz can be thermally tuned from–4.257 to–60.179 dB,and near-unity absorption is achieved at 523.750 K.Adjusting only the patterned VO_(2)film duty cycle can change the temperature of near-unity absorption.Our VO_(2)absorber has a simple composition,a high optical transmittance,a thermally tunable microwave absorption performance,a large modulation depth,and an adjustable temperature tuning range,making it promising for application in tunable sensors,thermal emitters,modulators,thermal imaging,bolometers,and photovoltaic devices.展开更多
A multifunctional surface plasmon polariton disk device coupled by two metal-insulator-metal(MIM) waveguides is proposed and investigated numerically with finite-difference time-domain simulation. It can be used as ...A multifunctional surface plasmon polariton disk device coupled by two metal-insulator-metal(MIM) waveguides is proposed and investigated numerically with finite-difference time-domain simulation. It can be used as optical switch and temperature sensor by filling disk with liquid crystal and ethanol, respectively. The simulation results demonstrate that the transmission characteristics of an optical switch can be manipulated by adjusting the radius of disk and the slit width between disk and MIM waveguides. The transmittance and modulation depth of optical switch at 1550 nm are up to 64.82% and 17.70 d B, respectively. As a temperature sensor, its figure of merit can reach 30.46. In this paper, an optical switch with better efficiency and a temperature sensor with better sensitivity can be achieved.展开更多
Structured illumination microscopy(SIM)is a promising super-resolution technique for imaging subcellular structures and dynamics due to its compatibility with most commonly usedffuorescent labeling methods.Structured ...Structured illumination microscopy(SIM)is a promising super-resolution technique for imaging subcellular structures and dynamics due to its compatibility with most commonly usedffuorescent labeling methods.Structured illumination can be obtained by either laser interference or projection of fringe patterns.Here,we proposed a fringe projector composed of a compact multiwavelength LEDs module and a digital micromirror device(DMD)which can be directly attached to most commercial invertedffuorescent microscopes and update it into a SIM system.The effects of the period and duty cycle of fringe patterns on the modulation depth of the structured lightfield were studied.With the optimized fringe pattern,1:6×resolution improvement could be obtained with high-end oil objectives.Multicolor imaging and dynamics of subcellular organelles in live cells were also demonstrated.Our method provides a low-cost solution for SIM setup to expand its wide range of applications to most research labs in thefield of life science and medicine.展开更多
We present a mechanically tunable broadband terahertz(THz) modulator based on the high-aligned Ni nanowire(NW)arrays. The modulator is a sandwich structure consisting of two polydimethylsiloxane layers and a central l...We present a mechanically tunable broadband terahertz(THz) modulator based on the high-aligned Ni nanowire(NW)arrays. The modulator is a sandwich structure consisting of two polydimethylsiloxane layers and a central layer of highaligned Ni NW arrays. Our experimental measurements reveal the transmittance of THz wave can be effectively modulated by mechanical stretching. The NW density in arrays increases with the strain increasing, which induced an enhancement in the absorption of THz wave. When the strain increases from 0 to 6.5%, a linear relationship is observed for the variation of modulation depth(MD) of THz wave regarding the strain, and the modulated range is from 0 to 85% in a frequency range from 0.3 THz to 1.8 THz. Moreover, the detectable MD is about 15% regarding the 1% strain change resolution. This flexible Ni NW-based modulator can be promised many applications, such as remote strain sensing, and wearable devices.展开更多
The fundamental algorithm of light beam propagation in high powerlaser system is investigated and the corresponding computational codes are given. It is shown that the number of modulation ring due to the diffraction ...The fundamental algorithm of light beam propagation in high powerlaser system is investigated and the corresponding computational codes are given. It is shown that the number of modulation ring due to the diffraction is related to the size of the pinhole in spatial filter (in terms of the times of diffraction limitation, i.e. TDL) and the Fresnel number of the laser system; for the complex laser system with multi-spatial filters and free space, the system can be investigated by the reciprocal rule of operators.展开更多
Due to the unique anisotropic chemical and physical properties,two-dimensional(2D)layered materials such as IV-VI monochalcogenides with puckered honeycomb structure,have received considerable interest recently.Among ...Due to the unique anisotropic chemical and physical properties,two-dimensional(2D)layered materials such as IV-VI monochalcogenides with puckered honeycomb structure,have received considerable interest recently.Among the IV-VI layered MX(M=Ge,Sn;X=Se,S)compounds,germanium sulfide(Ge S)stands out for its strongest anisotropic thermal conductivities and figure-of-merit values.Additionally,the layer-independent direct energy bands(Eg^1.6 e V,E1~2.1 e V)of Ge S flake provide excellent insights into further applications as visible photodetectors.Herein,the polarization-tunable nonlinear absorption(NA)patterns of Ge S flake have been systematically investigated.Specifically both the polarization-dependent Raman spectroscopy and the linear absorption(LA)spectroscopy were employed to characterize the lattice orientation and absorption edges of the251-nm Ge S flake.Considering the low damage threshold of Ge S flake,the Ge S/graphene heterostructure was fabricated to increase the threshold without changing the nonlinear properties of Ge S.Our NA results demonstrated that a 600-nm femtosecond laser with different polarizations would excite the saturated-absorption(SA)effect along armchair and reversesaturated-absorption(RSA)effect along zigzag in the Ge S/graphene heterostructure.Moreover,the function of the polarization-based Ge S/graphene heterostructure all-optical switch was experimentally verified.Notably,thanks to the polarization-dependent NA patterns(SA/RSA)of Ge S,the"ON"and"OFF"states of the all-optical switch can be accomplished by high and low transmittance states of continuous-wave laser(532 nm,80 n W),whose state can be controlled by the polarization of femtosecond switching laser(600 nm,35 fs,500 Hz,12 GW cm-2).The ON/OFF ratio can achieve up to 17%by changing polarization,compared with the ratios of 3.0%by increasing the incident power of switching light in our experiment.The polarization-tunable absorption patterns introduced in this work open up real perspectives for the next-generation optoelectronic devices based on Ge S/graphene heterostructure.展开更多
文摘Aiming at the specific protocol of RFID technology,a 915MHz CMOS transmitter front-end for OOK modulation is implemented in a 0.18μm CMOS process. The transmitter incorporates a class-E power amplifier (PA), a modulator, and a control logic unit. The direct-conversion architecture minimizes the required on-and-off-chip components and provides a low-cost and efficient solution. A novel structure is proposed to provide the modulation depth of 100% and 18% ,respectively. The PA presents an output ldB power of 17.6dBm while maintaining a maximum PAE of 35.4%.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774152)the Science and Technology Foundation of Guangzhou City,China(Grant No.2008J1-C021) the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20070055103)
文摘The polymethyl methacrylate (PMMA) film doped with an azo dye ethyl-red (ER) film is employed to demonstrate the properties of an all-optical switch by its photoinduced dichroism and birefringence. We show how to enhance remarkably the modulation depth of all-optical switches almost to 100% by using two linear polarization beams: one beam is inclined at 45° with respect to the probing beam and serves as a pumping beam, and the other beam is perpendicular to the probing beam and used as an erasing beam. Furthermore, a maximum-to-minimum output intensity ratio of 2000:1 is achieved in experiment, which is very useful and important for optical storages and image displays.
基金supported by Program for New Century Excellent Talents in University(No.NCET-06-0925)
文摘The modulation depth, defined according to practical modulation results, which changes with the microwave power and its frequency, is significant for systems utilizing the frequency-shift characteristic of the LiNbO3 waveguide Electro-Optic Intensity Modulator (EOIM). By analyzing the impedance mismatch between the microwave source and the EOIM, the effective voltage applied to the RF port of the EOIM is deprived from the microwave power and its frequency. Associating with analyses of the phase velocity mismatch between the microwave and the optical wave, the theoretical modulation depth has been obtained, which is verified by experimental results. We provide a method to choose the appropriate modulation depth to optimize the desired sideband through proper transmission bias for the system based on the frequency-shift characteristic of the EOIM.
基金supported by the National Natural Science Foundation of China (Grant No. 10704048)the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 11YZ120)the Innovation Fund Project for Graduate Student of Shanghai, China (Grant No. JWCXSL1022)
文摘Magnetic fluid is a kind of functional composite material with nanosized structure and unique optical properties. The tunable magneto-optic modulation of magnetic fluid under external magnetic field, achieved by adjusting the polarization direction of incident light, is investigated theoretically and experimentally in this work. The corresponding modulation depth and response time are obtained. The accompanying mechanisms are clarified by using the theory of dichroism of magtietic fluid and the aggregation/disintegration processes of magnetic particles within magnetic fluid when the external magnetic field turns on/off.
基金support from the National Natural Science Foundation of China(61975046)。
文摘Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent,and thermally tunable microwave absorber is proposed,based on a patterned vanadium dioxide(VO_(2))film.Numerical calculations and experiments demonstrate that the proposed VO_(2)absorber has a high optical transmittance of 84.9%at 620 nm;its reflection loss at 15.06 GHz can be thermally tuned from–4.257 to–60.179 dB,and near-unity absorption is achieved at 523.750 K.Adjusting only the patterned VO_(2)film duty cycle can change the temperature of near-unity absorption.Our VO_(2)absorber has a simple composition,a high optical transmittance,a thermally tunable microwave absorption performance,a large modulation depth,and an adjustable temperature tuning range,making it promising for application in tunable sensors,thermal emitters,modulators,thermal imaging,bolometers,and photovoltaic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61275059 and 61307062)
文摘A multifunctional surface plasmon polariton disk device coupled by two metal-insulator-metal(MIM) waveguides is proposed and investigated numerically with finite-difference time-domain simulation. It can be used as optical switch and temperature sensor by filling disk with liquid crystal and ethanol, respectively. The simulation results demonstrate that the transmission characteristics of an optical switch can be manipulated by adjusting the radius of disk and the slit width between disk and MIM waveguides. The transmittance and modulation depth of optical switch at 1550 nm are up to 64.82% and 17.70 d B, respectively. As a temperature sensor, its figure of merit can reach 30.46. In this paper, an optical switch with better efficiency and a temperature sensor with better sensitivity can be achieved.
基金The study was funded by the National Key Technologies R&D Program of China(2018YFC0114800 and 2017YFC0109900)the Natural Science Foundation of China(NSFC)(61405238)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20141206)the Key Technologies R&D Program of Jiangsu Province(BE2018666).
文摘Structured illumination microscopy(SIM)is a promising super-resolution technique for imaging subcellular structures and dynamics due to its compatibility with most commonly usedffuorescent labeling methods.Structured illumination can be obtained by either laser interference or projection of fringe patterns.Here,we proposed a fringe projector composed of a compact multiwavelength LEDs module and a digital micromirror device(DMD)which can be directly attached to most commercial invertedffuorescent microscopes and update it into a SIM system.The effects of the period and duty cycle of fringe patterns on the modulation depth of the structured lightfield were studied.With the optimized fringe pattern,1:6×resolution improvement could be obtained with high-end oil objectives.Multicolor imaging and dynamics of subcellular organelles in live cells were also demonstrated.Our method provides a low-cost solution for SIM setup to expand its wide range of applications to most research labs in thefield of life science and medicine.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62075245)Xinjiang Uygur Autonomous Region University Scientific Research Foundation (Grant No. XJEDU2018I021)。
文摘We present a mechanically tunable broadband terahertz(THz) modulator based on the high-aligned Ni nanowire(NW)arrays. The modulator is a sandwich structure consisting of two polydimethylsiloxane layers and a central layer of highaligned Ni NW arrays. Our experimental measurements reveal the transmittance of THz wave can be effectively modulated by mechanical stretching. The NW density in arrays increases with the strain increasing, which induced an enhancement in the absorption of THz wave. When the strain increases from 0 to 6.5%, a linear relationship is observed for the variation of modulation depth(MD) of THz wave regarding the strain, and the modulated range is from 0 to 85% in a frequency range from 0.3 THz to 1.8 THz. Moreover, the detectable MD is about 15% regarding the 1% strain change resolution. This flexible Ni NW-based modulator can be promised many applications, such as remote strain sensing, and wearable devices.
基金This work was partially supported bythe National Natural Science Foundation of China (Grant No. 69789801) the Natural Science Foundation of Guangdong Province (Grant No. 970842) National Hi-Tech Committee.
文摘The fundamental algorithm of light beam propagation in high powerlaser system is investigated and the corresponding computational codes are given. It is shown that the number of modulation ring due to the diffraction is related to the size of the pinhole in spatial filter (in terms of the times of diffraction limitation, i.e. TDL) and the Fresnel number of the laser system; for the complex laser system with multi-spatial filters and free space, the system can be investigated by the reciprocal rule of operators.
基金financial support from the National Natural Science Foundation of China(11802339,11805276,61805282,61801498,11804387,and 11902358)the Scientific Researches Foundation of National University of Defense Technology(ZK16-03-59,ZK18-01-03,ZK18-03-36,and ZK18-03-22)+4 种基金the Natural Science Foundation of Hunan province(2016JJ1021)the Open Director Fund of State Key Laboratory of Pulsed Power Laser Technology(SKL2018ZR05)the Open Research Fund of Hunan Provincial Key Laboratory of High Energy Technology(GNJGJS03)the Opening Foundation of State Key Laboratory of Laser Interaction with Matter(SKLLIM1702)the Youth Talent Lifting Project(17-JCJQ-QT004)。
文摘Due to the unique anisotropic chemical and physical properties,two-dimensional(2D)layered materials such as IV-VI monochalcogenides with puckered honeycomb structure,have received considerable interest recently.Among the IV-VI layered MX(M=Ge,Sn;X=Se,S)compounds,germanium sulfide(Ge S)stands out for its strongest anisotropic thermal conductivities and figure-of-merit values.Additionally,the layer-independent direct energy bands(Eg^1.6 e V,E1~2.1 e V)of Ge S flake provide excellent insights into further applications as visible photodetectors.Herein,the polarization-tunable nonlinear absorption(NA)patterns of Ge S flake have been systematically investigated.Specifically both the polarization-dependent Raman spectroscopy and the linear absorption(LA)spectroscopy were employed to characterize the lattice orientation and absorption edges of the251-nm Ge S flake.Considering the low damage threshold of Ge S flake,the Ge S/graphene heterostructure was fabricated to increase the threshold without changing the nonlinear properties of Ge S.Our NA results demonstrated that a 600-nm femtosecond laser with different polarizations would excite the saturated-absorption(SA)effect along armchair and reversesaturated-absorption(RSA)effect along zigzag in the Ge S/graphene heterostructure.Moreover,the function of the polarization-based Ge S/graphene heterostructure all-optical switch was experimentally verified.Notably,thanks to the polarization-dependent NA patterns(SA/RSA)of Ge S,the"ON"and"OFF"states of the all-optical switch can be accomplished by high and low transmittance states of continuous-wave laser(532 nm,80 n W),whose state can be controlled by the polarization of femtosecond switching laser(600 nm,35 fs,500 Hz,12 GW cm-2).The ON/OFF ratio can achieve up to 17%by changing polarization,compared with the ratios of 3.0%by increasing the incident power of switching light in our experiment.The polarization-tunable absorption patterns introduced in this work open up real perspectives for the next-generation optoelectronic devices based on Ge S/graphene heterostructure.