期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fast SHEPWM Solution Method for Wind Power Converter Based on State Equations
1
作者 Ning Li Shiqian Zhang +2 位作者 Xiaokang Liu Yan Zhang Lin Jiang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第4期1383-1393,共11页
Selective harmonic elimination pulse width modula-tion(SHEPWM)is a modulation strategy widely used for three-level wind power grid-connected converters.Its purpose is to eliminate specified sub-low frequency harmonics... Selective harmonic elimination pulse width modula-tion(SHEPWM)is a modulation strategy widely used for three-level wind power grid-connected converters.Its purpose is to eliminate specified sub-low frequency harmonics by controlling switching angle.Furthermore,it can reduce fluctuation of the microgrid system and improve system stability.Intelligent al-gorithms have been applied to the SHEPWM solution process to mitigate calculation complexity associated with the algebraic method,as well as the need to set the initial value.However,disorder of the optimization result causes difficulty in satisfying incremental constraint of the three-level NPC switching angles,and affects the success rate of the algorithm.To overcome this limitation,this paper proposes a fast SHEPWM strategy to optimize the result obtained by the intelligent algorithm.The SHEPWM can be realized by solving switching angles through a state equations-based mathematical model,which is constructed by using the initial variables randomly generated by the intelligent algorithm as the disturbance.This mathematical model improves the success rate of calculation by simplifying constraint representation of switching angles and solving the disorder problem of the optimization result.At the same time,a method based on the circle equation and the trigonometric function is applied to the initial variable assignment of the state equation,which further improves the speed and accuracy of the solution,realizes a more thorough filtering effect,and further reduces the impact of sub-low frequency harmonics on a wind power integrated system.Finally,simulation and experiment results have been used to prove the effectiveness of the proposed SHEPWM strategy when combined with intelligent algorithms.Index Terms-Wind power converter,adaptive genetic algorithm,selective harmonic elimination pulse-width modulation(SHEPWM),state equation,success rate. 展开更多
关键词 Wind power converter adaptive genetic algorithm selective harmonic elimination pulse-width modulation(SHEPWM) state equation success rate.
原文传递
A Novel Approach for Mitigating Power Quality Issues in a PV Integrated Microgrid System Using an Improved Jelly Fish Algorithm
2
作者 Swati Suman Debashis Chatterjee Rupali Mohanty 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第1期30-46,共17页
A two-step methodology was used to address and improve the power quality concerns for the PV-integrated microgrid system. First, partial shading was included to deal with the real-time issues. The Improved Jelly Fish ... A two-step methodology was used to address and improve the power quality concerns for the PV-integrated microgrid system. First, partial shading was included to deal with the real-time issues. The Improved Jelly Fish Algorithm integrated Perturb and Obserb (IJFA-PO) has been proposed to track the Global Maximum Power Point (GMPP). Second, the main unit-powered via DC–AC converter is synchronised with the grid. To cope with the wide voltage variation and harmonic mitigation, an auxiliary unit undergoes a novel series compensation technique. Out of various switching approaches, IJFA-based Selective Harmonic Elimination (SHE) in 120° conduction gives the optimal solution. Three switching angles were obtained using IJFA, whose performance was equivalent to that of nine switching angles. Thus, the system is efficient with minimised higher-order harmonics and lower switching losses. The proposed system outperformed in terms of efficiency, metaheuristics, and convergence. The Total Harmonic Distortion (THD) obtained was 1.32%, which is within the IEEE 1547 and IEC tolerable limits. The model was developed in MATLAB/Simulink 2016b and verified with an experimental prototype of grid-synchronised PV capacity of 260 W tested under various loading conditions. The present model is reliable and features a simple controller that provides more convenient and adequate performance. 展开更多
关键词 Harmonic mitigation Selective harmonic elimination pulse width modulation inverters Search-based optimization techniques Bionic algorithm Total harmonic distortion modulation indices
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部