本文将基于Hellinger-Reissner广义变分原理,提出一种分析复合材料缠绕壳结构应力场分析的混合状态Hamilton元半解析法。该方法在周向面内采用有限元离散;而沿径向对状态方程进行解析求解。在求解过程中,采用了传递矩阵技术,以保证层间...本文将基于Hellinger-Reissner广义变分原理,提出一种分析复合材料缠绕壳结构应力场分析的混合状态Hamilton元半解析法。该方法在周向面内采用有限元离散;而沿径向对状态方程进行解析求解。在求解过程中,采用了传递矩阵技术,以保证层间位移和应力的连续性,并建立了缠绕结构的内、外表面状态变量之间的关系。为此,不论缠绕结构的层数有多少,最后都归结为求解缠绕结构内、外表面未知量。同常规位移有限元法相比,此方法大大地降低了求解未知量的数目。文中还采用Chang F K提出的复合材料缠绕结构的破坏准则,对一在服役工况下具有金属内衬的复合材料缠绕壳典型结构进行了强度校核。展开更多
Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R...Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.展开更多
A hybrid natural element method(HNEM) for two-dimensional viscoelasticity problems under the creep condition is proposed. The natural neighbor interpolation is used as the test function, and the discrete equation sy...A hybrid natural element method(HNEM) for two-dimensional viscoelasticity problems under the creep condition is proposed. The natural neighbor interpolation is used as the test function, and the discrete equation system of the HNEM for viscoelasticity problems is obtained using the Hellinger–Reissner variational principle. In contrast to the natural element method(NEM), the HNEM can directly obtain the nodal stresses, which have higher precisions than those obtained using the moving least-square(MLS) approximation. Some numerical examples are given to demonstrate the validity and superiority of this HNEM.展开更多
We present the hybrid natural element method(HNEM) for two-dimensional elastoplastic large deformation problems. Sibson interpolation is adopted to construct the shape functions of nodal incremental displacements an...We present the hybrid natural element method(HNEM) for two-dimensional elastoplastic large deformation problems. Sibson interpolation is adopted to construct the shape functions of nodal incremental displacements and incremental stresses. The incremental form of Hellinger–Reissner variational principle for elastoplastic large deformation problems is deduced to obtain the equation system. The total Lagrangian formulation is used to describe the discrete equation system.Compared with the natural element method(NEM), the HNEM has higher computational precision and efficiency in solving elastoplastic large deformation problems. Some numerical examples are selected to demonstrate the advantage of the HNEM for large deformation elastoplasticity problems.展开更多
Sensitivity analysis of composite laminated plates with bonding imperfection is carried out based on the radial point interpolation method (RPIM) in a Hamilton system. A set of hybrid governing equations of response...Sensitivity analysis of composite laminated plates with bonding imperfection is carried out based on the radial point interpolation method (RPIM) in a Hamilton system. A set of hybrid governing equations of response and sensitivity quantities is reduced using the spring-layer model and the modified Hellinger-Reissner (H-R) variational principle. The analytical method (AM), the semi-analytical method (SAM), and the finite difference method (FDM) are used for sensitivity analysis based on the reduced set of hybrid governing equations. A major advantage of the hybrid governing equations is that the convolution algorithm is avoided in sensitivity analysis. In addition, sensitivity analysis using this set of hybrid governing equations can obtain response values and sensitivity coefficients simultaneously, and accounts for bonding imperfection of composite laminated plates.展开更多
文摘本文将基于Hellinger-Reissner广义变分原理,提出一种分析复合材料缠绕壳结构应力场分析的混合状态Hamilton元半解析法。该方法在周向面内采用有限元离散;而沿径向对状态方程进行解析求解。在求解过程中,采用了传递矩阵技术,以保证层间位移和应力的连续性,并建立了缠绕结构的内、外表面状态变量之间的关系。为此,不论缠绕结构的层数有多少,最后都归结为求解缠绕结构内、外表面未知量。同常规位移有限元法相比,此方法大大地降低了求解未知量的数目。文中还采用Chang F K提出的复合材料缠绕结构的破坏准则,对一在服役工况下具有金属内衬的复合材料缠绕壳典型结构进行了强度校核。
基金supported by the National Natural Science Foundation of China (Grant 11502286)
文摘Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.
基金Project supported by the Natural Science Foundation of Shanghai,China(Grant No.13ZR1415900)
文摘A hybrid natural element method(HNEM) for two-dimensional viscoelasticity problems under the creep condition is proposed. The natural neighbor interpolation is used as the test function, and the discrete equation system of the HNEM for viscoelasticity problems is obtained using the Hellinger–Reissner variational principle. In contrast to the natural element method(NEM), the HNEM can directly obtain the nodal stresses, which have higher precisions than those obtained using the moving least-square(MLS) approximation. Some numerical examples are given to demonstrate the validity and superiority of this HNEM.
基金supported by the Natural Science Foundation of Shanghai,China(Grant No.13ZR1415900)
文摘We present the hybrid natural element method(HNEM) for two-dimensional elastoplastic large deformation problems. Sibson interpolation is adopted to construct the shape functions of nodal incremental displacements and incremental stresses. The incremental form of Hellinger–Reissner variational principle for elastoplastic large deformation problems is deduced to obtain the equation system. The total Lagrangian formulation is used to describe the discrete equation system.Compared with the natural element method(NEM), the HNEM has higher computational precision and efficiency in solving elastoplastic large deformation problems. Some numerical examples are selected to demonstrate the advantage of the HNEM for large deformation elastoplasticity problems.
基金Project supported by the National Natural Science Foundation of China (No. 60979001)the Major Project of Civil Aviation University of China (No. CAUC2009ZD0101)
文摘Sensitivity analysis of composite laminated plates with bonding imperfection is carried out based on the radial point interpolation method (RPIM) in a Hamilton system. A set of hybrid governing equations of response and sensitivity quantities is reduced using the spring-layer model and the modified Hellinger-Reissner (H-R) variational principle. The analytical method (AM), the semi-analytical method (SAM), and the finite difference method (FDM) are used for sensitivity analysis based on the reduced set of hybrid governing equations. A major advantage of the hybrid governing equations is that the convolution algorithm is avoided in sensitivity analysis. In addition, sensitivity analysis using this set of hybrid governing equations can obtain response values and sensitivity coefficients simultaneously, and accounts for bonding imperfection of composite laminated plates.