期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
APPROXIMATION BY WALSH-KACZMARZ-FEJR MEANS ON THE HARDY SPACE 被引量:1
1
作者 George TEPHNADZE 《Acta Mathematica Scientia》 SCIE CSCD 2014年第5期1593-1602,共10页
The main aim of this paper is to find necessary and sufficient conditions for the convergence of Walsh-Kaczmarz-Fej′er means in the terms of the modulus of continuity on the Hardy spaces Hp, when 0〈p≤1/2.
关键词 Walsh-Kaczmarz system Fej6r means martingale Hardy space modulus ofcontinuity
下载PDF
APPROXIMATION PROPERTIES OF rth ORDER GENERALIZED BERNSTEIN POLYNOMIALS BASED ON q-CALCULUS 被引量:1
2
作者 Honey Sharma 《Analysis in Theory and Applications》 2011年第1期40-50,共11页
In this paper we introduce a generalization of Bernstein polynomials based on q calculus. With the help of Bohman-Korovkin type theorem, we obtain A-statistical approximation properties of these operators. Also, by us... In this paper we introduce a generalization of Bernstein polynomials based on q calculus. With the help of Bohman-Korovkin type theorem, we obtain A-statistical approximation properties of these operators. Also, by using the Modulus of continuity and Lipschitz class, the statistical rate of convergence is established. We also gives the rate of A-statistical convergence by means of Peetre's type K-functional. At last, approximation properties of a rth order generalization of these operators is discussed. 展开更多
关键词 q- integers q-Bernstein polynomials A-statistical convergence modulus ofcontinuity Lipschitz class Peetre's type K-functional
下载PDF
On the Gauss-Weierstrass Summability of Multiple Trigonometric Series at μ-smoothness Points
3
作者 Sinem SEZER Ilham A. ALIEV 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第4期741-746,共6页
The notion of μ-smoothness points of periodic functions of several variables is introduced and the rate of convergence of the Gauss-Weierstrass means of relevant Fourier series at these points is investigated.
关键词 Multiple Fourier series Fourier transform Gauss-Weierstrass summability modulus ofcontinuity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部