In this paper, we demonstrate a new optical method for tiny strain measurements based on the principle of carrier fringes of moire interferometry. A cross-line grating with frequency of 1200 lp/mm is replicated on the...In this paper, we demonstrate a new optical method for tiny strain measurements based on the principle of carrier fringes of moire interferometry. A cross-line grating with frequency of 1200 lp/mm is replicated on the specimen surface, and the strain can be deduced from the changes in carrier fringes before and after the deformation of an object. Four coherent laser beams are used to obtain the carrier fringe patterns of field U and V. Both theoretical analysis and numerical simulation indicate that the ideal accuracy of strain can be controlled within a range of ±1με. Case study of a plane extension experiment shows that the measurement accuracy of strain can be controlled within the range of ±10με. The average strain values of every row of field U and every column of field V can be obtained by using this method, and approximated strain of every pixel in the whole-field can be further acquired, and thus it is possible to measure tiny strains occurred in a micro-field. The technology in this paper can provide comprehensive information for analyzing related mechanical content in the field of MEMS.展开更多
This paper presents the application of Moire interferometry in measuring the displacement and strain field at notch-tip and crack-tip before and after crack propagation.The experiment is carried out using a three poin...This paper presents the application of Moire interferometry in measuring the displacement and strain field at notch-tip and crack-tip before and after crack propagation.The experiment is carried out using a three point bending beam with a notch.The N_x and N_y fringe patterns representing displacement field,and the ΔN_x/Δx and ΔN_y/Δy fringe patterns representing the strain field are obtained.The sensitivity of the meas- ured displacement is 0.417μm per fringe order.The displacement and strain distribution along the section x=0 have been worked out according to N_x and N_y fringe patterns.展开更多
基金the Basal Research Funds of National Defence Science and Technology
文摘In this paper, we demonstrate a new optical method for tiny strain measurements based on the principle of carrier fringes of moire interferometry. A cross-line grating with frequency of 1200 lp/mm is replicated on the specimen surface, and the strain can be deduced from the changes in carrier fringes before and after the deformation of an object. Four coherent laser beams are used to obtain the carrier fringe patterns of field U and V. Both theoretical analysis and numerical simulation indicate that the ideal accuracy of strain can be controlled within a range of ±1με. Case study of a plane extension experiment shows that the measurement accuracy of strain can be controlled within the range of ±10με. The average strain values of every row of field U and every column of field V can be obtained by using this method, and approximated strain of every pixel in the whole-field can be further acquired, and thus it is possible to measure tiny strains occurred in a micro-field. The technology in this paper can provide comprehensive information for analyzing related mechanical content in the field of MEMS.
基金The project supported by Chinese Academy of Sciences and National Natural Science Foundation of China
文摘This paper presents the application of Moire interferometry in measuring the displacement and strain field at notch-tip and crack-tip before and after crack propagation.The experiment is carried out using a three point bending beam with a notch.The N_x and N_y fringe patterns representing displacement field,and the ΔN_x/Δx and ΔN_y/Δy fringe patterns representing the strain field are obtained.The sensitivity of the meas- ured displacement is 0.417μm per fringe order.The displacement and strain distribution along the section x=0 have been worked out according to N_x and N_y fringe patterns.