The habitat structure and floristic composition examined <span style="font-family:Verdana;">for </span><span style="font-family:Verdana;">this study are of great importance, provi...The habitat structure and floristic composition examined <span style="font-family:Verdana;">for </span><span style="font-family:Verdana;">this study are of great importance, providing a scientific baseline of information for developing a biodiversity database and in supporting crucial information for the management decision-making process of the buffer zones. The primary objective of this study was to examine the current status of species composition and stand structure of moist evergreen forests distributed in the TNR buffer zone. Forest inventory was conducted in the primary moist evergreen forest (~1 ha) and secondary moist evergreen forest (~1 ha). In the TNR buffer zone, 83 species belonging to 31 families in the primary moist evergreen forest and 86 species belonging to 32 families in the secondary moist evergreen forest were found. The most dominant families in the primary moist evergreen forest were Dipterocarpaceae, Sapindaceae, Meliaceae, Myrtaceae, and Myristicaceae;at species level</span><span style="font-family:Verdana;">;</span><span style="font-family:;" "=""><span style="font-family:Verdana;">this forest was composed of </span><i><span style="font-family:Verdana;">Nephelium</span></i><span style="font-family:Verdana;"> <i>lappaceum</i></span><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Myristica</span></i><span style="font-family:Verdana;"> <i>malabarica</i></span><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Nephelium</span></i><span style="font-family:Verdana;"> <i>laurium</i></span><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Aglaia</span></i><span style="font-family:Verdana;"> <i>andamanica</i></span><span style="font-family:Verdana;">, and </span><i><span style="font-family:Verdana;">Diospyros</span></i><span style="font-family:Verdana;"> <i>peregrine</i></span><span style="font-family:Verdana;">. The most dominant families in the secondary moist evergreen forest were Myrtaceae, Sapindaceae, Euphorbiaceae, Myristicaceae, and Lauraceae, while </span><i><span style="font-family:Verdana;">Nephelium</span></i><span style="font-family:Verdana;"> <i>lappaceum</i></span><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Syzygium</span></i><span> <i><span style="font-family:Verdana;">claviflorum</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Syzygium</span></i> </span><span style="font-family:Verdana;">sp-1</span><span><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Eugenia</span></i> <i><span style="font-family:Verdana;">oblate</span></i></span><span style="font-family:Verdana;">, and </span><i><span style="font-family:Verdana;">Myristica</span></i><span style="font-family:Verdana;"> <i>angustifolia</i></span><span style="font-family:Verdana;"> were the most dominant at the species level. The results of S?rensen’s similarity index based on common species (Ks) and the similarity index based on species dominance (Kd) were observed at about 55% and 75% between the primary and secondary moist evergreen forests. The basal area (51.39 </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">m</span><sup><span style="font-family:Verdana;">2.</span></sup><span style="font-family:Verdana;">ha<sup>-</sup></span></span><span style="font-family:Verdana;"><sup>1</sup></span><span style="font-family:Verdana;">) of the primary moist evergreen forest was higher than that (44.50 </span><span style="font-family:;" "=""><span style="font-family:Verdana;">m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"><sup>.</sup>ha<span style="font-size:10px;"><sup>-1</sup></span></span></span><span style="font-family:Verdana;">) of the secondary moist evergreen forest. Between these two forest types, the Shannon-Wiener, the Simpson and the Evenness indices were not significantly different at (p < 0.05). The total number of trees per hectare (n/ha) of the primary and secondary moist evergreen forests w</span><span style="font-family:Verdana;">ere</span><span style="font-family:Verdana;"> 910 (±184) and 991</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">(±183).</span> <div class="__kindeditor_paste__" style="position:absolute;width:1px;height:1px;overflow:hidden;left:-1981px;top:202px;white-space:nowrap;"> <table border="1" width="100%" cellspacing="0" cellpadding="0" style="outline:0px;border-spacing:0px;width:772px;margin-bottom:0px;margin-left:auto;margin-right:auto;overflow-wrap:break-word;color:#333333;font-family:-apple-system, " font-size:14px;background-color:#ffffff;"=""> <tbody style="box-sizing:border-box;outline:0px;border:0px;overflow-wrap:break-word;"> <tr style="box-sizing:border-box;outline:0px;border-width:1px 0px 0px;border-right-style:initial;border-bottom-style:initial;border-left-style:initial;border-right-color:initial;border-bottom-color:initial;border-left-color:initial;border-image:initial;border-top-style:solid;border-top-color:#DDDDDD;overflow-wrap:break-word;"> <td style="box-sizing:border-box;outline:0px;padding:8px;margin:0px;overflow-wrap:break-word;border:1px solid #DDDDDD;font-size:14px;color:#4F4F4F;line-height:22px;"> <p align="left" style="box-sizing:border-box;outline:0px;margin-top:0px;margin-bottom:0px;padding:0px;overflow:auto hidden;line-height:22px;"> ? </p> </td> </tr> </tbody> </table> </div>展开更多
A participatory action research was conducted in 2022,with the“Establishment of Demonstration Site for Peatland Conservation through Integrated Management and Sustainable Utilization of Non-Timber Forest Products(NTF...A participatory action research was conducted in 2022,with the“Establishment of Demonstration Site for Peatland Conservation through Integrated Management and Sustainable Utilization of Non-Timber Forest Products(NTFPs)”to give recommendation on the development of guidelines on Sustainable Utilization of Non-Timber Forest Products(NTFPs)and peatland conservation.According to the peat soil assessment,it was found that peat soil content was very low and top soil was thin under the mangrove forest,and Payena paralleloneura-Kan Zaw bearing forest in March 2022.Organic material might be pressed by trespasser to collect Kan Zaw seed,to conduct horticulture and mining near the Kan Zaw bearing forest,or organic material might be damaged by burning with controlled fire in the previous years,under Kan Zaw trees to collect seeds.Organic material might have been carried to the downwards with running water due to the heavy rainfall,with 4,700 mm/year.Mangrove forest and Kan Zaw bearing evergreen forest can be assumed as“the major source of coastal peatland formation,with peat deposits eroded seawards”.It is assumed that the organic material will accumulate on top of the sands and it will lead to the formation of the peatland at coastal zone.It can be assumed that the accumulation of organic material found in mangrove forest and evergreen forests will promote the soil carbon storage,if we can adopt the ASEAN Policy on Zero Burning,which reflect ASEAN's commitment to controlling fires and haze,offering techniques,benefits,requirements,and challenges for implementing zero burning practices[1].Sustainable utilization of NTFP including peat and Kan Zaw-Payena paralleloneura Kurz seed was studied at demonstration sites,and it is recommended to make a trial on silvicultural system at mangrove forest and apply suitable silvicultural system such as Clear-Felling(in blocks or in alternate strips)system,Selection System,and Shelter Wood System to ensure the sustainable utilization of NTFP from mangrove forest[2].Gap planting and assisted natural regeneration are also recommended for mangrove forest and Kan Zaw-bearing forest.展开更多
Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and...Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The region, though surprisingly far from the equator and at a relatively high altitude, has a rich tropical flora and a typical tropical rain forest in the lowland areas. Based on physiognomic and ecological characteristics, floristic composition and habitats combined, the primary vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes, i.e. a tropical seasonal rain forest in the lowlands and a tropical montane rain forest at higher elevations. The tropical seasonal rain forest has almost the same forest profile and physiognomic characteristics as equatorial lowland rain forests and is a type of truly tropical rain forest. Because of conspicuous similarity on ecological and floristic characteristics, the tropical rain forest in Xishuangbanna is a type of tropical Asian rain forest. However, since the tropical rain forest of Xishuangbanna occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in having some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll. It is a type of semi-evergreen rain forest at the northern edge of the tropical zone. The tropical montane rain forest occurs at wet montane habitats and is similar to the lower montane rain forest in equatorial Asia in floristic composition and physiognomy. It is a type of lower montane rain forests within the broader category of tropical rain forests. The tropical seasonal moist forest occurs on middle and upper limestone slopes. It is similar to the tropical montane evergreen broad-leaved forest in the region in physiognomy, but differs from the latter in floristic composition. It is a vegetation type on limestone at high elevations. The monsoon forest in Xishuangbanna is a tropical deciduous forest under the influence of a strong monsoon climate and is considered to be a transitional vegetation type between a tropical rain forest and savanna in physiognomy and distribution. The tropical montane evergreen broad-leaved forest is the main montane vegetation type in the region. It is dominated largely by the families Fagaceae, Euphorbiaceae, Theaceae and Lauraceae. It differs from tropical lower montane rain forests in its lack of epiphytes and in having more abundant lianas and plants with compound leaves. It is considered to be a distinct vegetation type from the northern margin of mainland southeastern Asia, controlled by a strong seasonal climate, based on its floristic and physiognomic characteristics.展开更多
文摘The habitat structure and floristic composition examined <span style="font-family:Verdana;">for </span><span style="font-family:Verdana;">this study are of great importance, providing a scientific baseline of information for developing a biodiversity database and in supporting crucial information for the management decision-making process of the buffer zones. The primary objective of this study was to examine the current status of species composition and stand structure of moist evergreen forests distributed in the TNR buffer zone. Forest inventory was conducted in the primary moist evergreen forest (~1 ha) and secondary moist evergreen forest (~1 ha). In the TNR buffer zone, 83 species belonging to 31 families in the primary moist evergreen forest and 86 species belonging to 32 families in the secondary moist evergreen forest were found. The most dominant families in the primary moist evergreen forest were Dipterocarpaceae, Sapindaceae, Meliaceae, Myrtaceae, and Myristicaceae;at species level</span><span style="font-family:Verdana;">;</span><span style="font-family:;" "=""><span style="font-family:Verdana;">this forest was composed of </span><i><span style="font-family:Verdana;">Nephelium</span></i><span style="font-family:Verdana;"> <i>lappaceum</i></span><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Myristica</span></i><span style="font-family:Verdana;"> <i>malabarica</i></span><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Nephelium</span></i><span style="font-family:Verdana;"> <i>laurium</i></span><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Aglaia</span></i><span style="font-family:Verdana;"> <i>andamanica</i></span><span style="font-family:Verdana;">, and </span><i><span style="font-family:Verdana;">Diospyros</span></i><span style="font-family:Verdana;"> <i>peregrine</i></span><span style="font-family:Verdana;">. The most dominant families in the secondary moist evergreen forest were Myrtaceae, Sapindaceae, Euphorbiaceae, Myristicaceae, and Lauraceae, while </span><i><span style="font-family:Verdana;">Nephelium</span></i><span style="font-family:Verdana;"> <i>lappaceum</i></span><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Syzygium</span></i><span> <i><span style="font-family:Verdana;">claviflorum</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Syzygium</span></i> </span><span style="font-family:Verdana;">sp-1</span><span><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Eugenia</span></i> <i><span style="font-family:Verdana;">oblate</span></i></span><span style="font-family:Verdana;">, and </span><i><span style="font-family:Verdana;">Myristica</span></i><span style="font-family:Verdana;"> <i>angustifolia</i></span><span style="font-family:Verdana;"> were the most dominant at the species level. The results of S?rensen’s similarity index based on common species (Ks) and the similarity index based on species dominance (Kd) were observed at about 55% and 75% between the primary and secondary moist evergreen forests. The basal area (51.39 </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">m</span><sup><span style="font-family:Verdana;">2.</span></sup><span style="font-family:Verdana;">ha<sup>-</sup></span></span><span style="font-family:Verdana;"><sup>1</sup></span><span style="font-family:Verdana;">) of the primary moist evergreen forest was higher than that (44.50 </span><span style="font-family:;" "=""><span style="font-family:Verdana;">m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"><sup>.</sup>ha<span style="font-size:10px;"><sup>-1</sup></span></span></span><span style="font-family:Verdana;">) of the secondary moist evergreen forest. Between these two forest types, the Shannon-Wiener, the Simpson and the Evenness indices were not significantly different at (p < 0.05). The total number of trees per hectare (n/ha) of the primary and secondary moist evergreen forests w</span><span style="font-family:Verdana;">ere</span><span style="font-family:Verdana;"> 910 (±184) and 991</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">(±183).</span> <div class="__kindeditor_paste__" style="position:absolute;width:1px;height:1px;overflow:hidden;left:-1981px;top:202px;white-space:nowrap;"> <table border="1" width="100%" cellspacing="0" cellpadding="0" style="outline:0px;border-spacing:0px;width:772px;margin-bottom:0px;margin-left:auto;margin-right:auto;overflow-wrap:break-word;color:#333333;font-family:-apple-system, " font-size:14px;background-color:#ffffff;"=""> <tbody style="box-sizing:border-box;outline:0px;border:0px;overflow-wrap:break-word;"> <tr style="box-sizing:border-box;outline:0px;border-width:1px 0px 0px;border-right-style:initial;border-bottom-style:initial;border-left-style:initial;border-right-color:initial;border-bottom-color:initial;border-left-color:initial;border-image:initial;border-top-style:solid;border-top-color:#DDDDDD;overflow-wrap:break-word;"> <td style="box-sizing:border-box;outline:0px;padding:8px;margin:0px;overflow-wrap:break-word;border:1px solid #DDDDDD;font-size:14px;color:#4F4F4F;line-height:22px;"> <p align="left" style="box-sizing:border-box;outline:0px;margin-top:0px;margin-bottom:0px;padding:0px;overflow:auto hidden;line-height:22px;"> ? </p> </td> </tr> </tbody> </table> </div>
文摘A participatory action research was conducted in 2022,with the“Establishment of Demonstration Site for Peatland Conservation through Integrated Management and Sustainable Utilization of Non-Timber Forest Products(NTFPs)”to give recommendation on the development of guidelines on Sustainable Utilization of Non-Timber Forest Products(NTFPs)and peatland conservation.According to the peat soil assessment,it was found that peat soil content was very low and top soil was thin under the mangrove forest,and Payena paralleloneura-Kan Zaw bearing forest in March 2022.Organic material might be pressed by trespasser to collect Kan Zaw seed,to conduct horticulture and mining near the Kan Zaw bearing forest,or organic material might be damaged by burning with controlled fire in the previous years,under Kan Zaw trees to collect seeds.Organic material might have been carried to the downwards with running water due to the heavy rainfall,with 4,700 mm/year.Mangrove forest and Kan Zaw bearing evergreen forest can be assumed as“the major source of coastal peatland formation,with peat deposits eroded seawards”.It is assumed that the organic material will accumulate on top of the sands and it will lead to the formation of the peatland at coastal zone.It can be assumed that the accumulation of organic material found in mangrove forest and evergreen forests will promote the soil carbon storage,if we can adopt the ASEAN Policy on Zero Burning,which reflect ASEAN's commitment to controlling fires and haze,offering techniques,benefits,requirements,and challenges for implementing zero burning practices[1].Sustainable utilization of NTFP including peat and Kan Zaw-Payena paralleloneura Kurz seed was studied at demonstration sites,and it is recommended to make a trial on silvicultural system at mangrove forest and apply suitable silvicultural system such as Clear-Felling(in blocks or in alternate strips)system,Selection System,and Shelter Wood System to ensure the sustainable utilization of NTFP from mangrove forest[2].Gap planting and assisted natural regeneration are also recommended for mangrove forest and Kan Zaw-bearing forest.
文摘Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The region, though surprisingly far from the equator and at a relatively high altitude, has a rich tropical flora and a typical tropical rain forest in the lowland areas. Based on physiognomic and ecological characteristics, floristic composition and habitats combined, the primary vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes, i.e. a tropical seasonal rain forest in the lowlands and a tropical montane rain forest at higher elevations. The tropical seasonal rain forest has almost the same forest profile and physiognomic characteristics as equatorial lowland rain forests and is a type of truly tropical rain forest. Because of conspicuous similarity on ecological and floristic characteristics, the tropical rain forest in Xishuangbanna is a type of tropical Asian rain forest. However, since the tropical rain forest of Xishuangbanna occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in having some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll. It is a type of semi-evergreen rain forest at the northern edge of the tropical zone. The tropical montane rain forest occurs at wet montane habitats and is similar to the lower montane rain forest in equatorial Asia in floristic composition and physiognomy. It is a type of lower montane rain forests within the broader category of tropical rain forests. The tropical seasonal moist forest occurs on middle and upper limestone slopes. It is similar to the tropical montane evergreen broad-leaved forest in the region in physiognomy, but differs from the latter in floristic composition. It is a vegetation type on limestone at high elevations. The monsoon forest in Xishuangbanna is a tropical deciduous forest under the influence of a strong monsoon climate and is considered to be a transitional vegetation type between a tropical rain forest and savanna in physiognomy and distribution. The tropical montane evergreen broad-leaved forest is the main montane vegetation type in the region. It is dominated largely by the families Fagaceae, Euphorbiaceae, Theaceae and Lauraceae. It differs from tropical lower montane rain forests in its lack of epiphytes and in having more abundant lianas and plants with compound leaves. It is considered to be a distinct vegetation type from the northern margin of mainland southeastern Asia, controlled by a strong seasonal climate, based on its floristic and physiognomic characteristics.