期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Late Holocene Moisture Changes in the Core Area of Arid Central Asia Reflected by Rock Magnetic Records of Glacier Lake Kalakuli Sediments in the Westernmost Tibetan Plateau and their Influences on the Evolution of Ancient Silk Road
1
作者 WU Xudong LIU Xingqi Erwin APPEL 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第3期658-667,共10页
The evolution of Ancient Silk Road(ASR) was deeply influenced by late Holocene moisture changes in Arid Central Asia(ACA). Nevertheless, controversies in Holocene moisture change pattern of ACA and poorly–constrained... The evolution of Ancient Silk Road(ASR) was deeply influenced by late Holocene moisture changes in Arid Central Asia(ACA). Nevertheless, controversies in Holocene moisture change pattern of ACA and poorly–constrained age models of related studies have made the discussion about late Holocene moisture changes in ACA and their influences on the evolution of ASR difficult. Recently, a high–resolution age model during the late Holocene was established for Kalakuli Lake, a small glacier lake located in the core area of ACA. A thorough rock magnetic investigation was carried out on Kalakuli Lake sediments based on this age model. The magnetic mineral assemblage of Kalakuli Lake sediments is still dominated by primary magnetite despite minor diagenetic effects. Comparisons of rock magnetic records to parameters previously used as indicator of glacier fluctuations suggest that clastic input to Kalakuli Lake was high(low) and magnetic grain size is relatively larger(smaller), when glaciers on Muztagh Ata advanced(retreated). The ARM/SIRM ratio, a magnetic grain size proxy, is directly related to lake hydrodynamics, which are ultimately controlled by glacier fluctuations on Muztagh Ata as the result of regional moisture changes. Late Holocene moisture changes indicated by the ARM/SIRM ratio are consistent with cool/wet and warm/dry oscillations indicated by the unweighted average of biomarker hydrogen isotopic data of the C26 and C28 n–alkanoic acids in a previous study about Kalakuli Lake, most moisture change records of the core area of ACA and winter insolation of the Northern Hemisphere, but opposite to Asian monsoon evolution. Given Asian monsoon and the westerlies are mutually inhibited, we propose that late Holocene moisture changes in the core area of ACA were controlled by the intensity of Asian monsoon versus the westerlies under the governance of solar insolation. Generally increased moisture since the late Holocene indicated by the ARM/SIRM ratio favored cultural exchange and integration between the western and the eastern Eurasia, which paved the way for the formation of ASR. Coincidence between significant increase in moisture at ~200 BC suggested by the ARM/SIRM ratio and the formation of ASR indicates moisture as an important factor that facilitated the formation of ASR. The onsets of three prosperity periods of ASR in the history generally correspond to periods when moisture was relatively high, nevertheless, stagnant periods of ASR do not coincide with periods when moisture was relatively low in the core area of ACA. Disorganized correlations between stagnant periods of ASR and moisture changes in the core area of ACA suggest that moisture is not the decisive factor influencing the evolution of ASR. 展开更多
关键词 moisture changes rock magnetic records Kalakuli Lake Arid Central Asia Ancient Silk Road
下载PDF
Effects of Plastic Film Mulching of Millet on Soil Moisture and Temperature in Semi-Arid Areas in South Ningxia of China 被引量:3
2
作者 LIAO Yun-cheng ZHANG De-qi JIA Zhi-kuan ZHANG Li LU Yang-ming 《Agricultural Sciences in China》 CAS CSCD 2005年第11期865-871,共7页
The effects of film mulching of millet on soil water content were studied in semi-arid areas in the Loess Plateau of South Ningxia, China. Different mulching methods including water micro-collecting farming (WF), wa... The effects of film mulching of millet on soil water content were studied in semi-arid areas in the Loess Plateau of South Ningxia, China. Different mulching methods including water micro-collecting farming (WF), water micro-collecting farming in winter fallow (WW), hole seeding on film (HF), hole seeding on film in winter fallow (HW) were compared to determine the effects of mulching methods on soil water collecting and conservation during millet growth periods of 2003-2004, as well as the variation tendency of water content after rainfall, output of millet and water use efficiency (WUE). The experimental results in the two successive years indicated that water micro-collecting farming had a better function of collecting water after rainfall, and side infiltrated water was stored under the ridges and the top layer 0-40 cm soil water changes were great. WF had obvious role in water collection and preservation of soil moisture. It effectively improved the water supply capacity by about 19.05% in the end of growth seasons. The storage of HW and WW increased by 24.9 and 7.1 mm compared with CK, and output of yield were obviously increased. Film mulching increased the yield of millet and enhanced water use efficiency (WUE). During different growth periods, WF exhibited better water storage function with lower water consumption, and demonstrated optimal social and ecological benefits. 展开更多
关键词 MILLET Dynamic change of soil moisture Film mulching Water micro-collecting farming
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部