期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Interaction of Diabatic Frontogenesis and MoistureProcesses in Cold-Frontal Rain-Band 被引量:3
1
作者 王春明 伍荣生 王元 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第3期544-561,共18页
Three-dimensional simulation of cold-front rain-band (NCFR) associated with a straight cold front has been studied by use of a non-hydrostatic, full compressible storm-scale model (ARPS) including multi-phase microphy... Three-dimensional simulation of cold-front rain-band (NCFR) associated with a straight cold front has been studied by use of a non-hydrostatic, full compressible storm-scale model (ARPS) including multi-phase microphysical parameterization. The dynamical and physical features of the frontal cloud de-velopment have been well simulated and analyzed. It is in evidence that the frontal cloud is triggered by the updraft of the secondary frontal circulation. However, the long persistence of diabatic frontogenesis only can be attributed to positive feedback between the frontal baroclinicity and the prefrontal latent heat release. The simulations indeed demonstrate that the potential temperature gradient enhancement in front zone is strongly related with the re-distribution of cloud moisture, by the action of tilted updraft. In conse-quence, the splice of cooling and heating pool that is respectively created from the evaporation of cloud wat-er and condensing J freezing of water vapor J rain droplet, wich is in favor of the strong contrast of cool and warm air mass across the frontal zone to diabatic frontogenesis. 展开更多
关键词 NCFR Diabatic frontogenesis moisture heating FEEDBACK
下载PDF
Anomalous Atmospheric Circulation, Heat Sources and Moisture Sinks in Relation to Great Precipitation Anomalies in the Yangtze River Valley 被引量:5
2
作者 杨辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第5期972-983,共12页
Using the summer (June to August) monthly mean data of the National Centers for Environmental Predictions (NCEP) - National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1997, atmospheric heat sources... Using the summer (June to August) monthly mean data of the National Centers for Environmental Predictions (NCEP) - National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1997, atmospheric heat sources and moisture sinks are calculated. Anomalous circulation and the vertically integrated heat source with the vertical integrated moisture sink and outgoing longwave radiation (OLR) flux are examined based upon monthly composites for 16 great wet-spells and 8 great dry-spells over the middle-lower reaches of the Yangtze River. The wind anomaly exhibits prominent differences between the great wet-spell and the great dry-spell over the Yangtze River Valley. For the great wet-spell, the anomalous southerly from the Bay of Bengal and the South China Sea and the anomalous northerly over North China enhanced low-level convergence toward a narrow latitudinal belt area (the middle-lower reaches of the Yangtze River). The southerly anomaly is connected with an anticyclonic anomalous circulation system centered at 22 degreesN, 140 degreesE and the northerly anomaly is associated with a cyclonic anomalous circulation system centered at the Japan Sea. In the upper level, the anomalous northwesterly between an anticyclonic anomalous system with the center at 23 degreesN, 105 degreesE and a cyclonic anomalous system with the center at Korea diverged over the middle-lower reaches of the Yangtze River. On the contrary, for the great dry-spell, the anomalous northerly over South China and the anomalous southerly over North China diverged from the Yangtze River Valley in the low level. The former formed in the western part of a cyclonic anomalous system centered at 23 degreesN, 135 degreesE. The latter was located in the western ridge of an anticyclonic anomalous system in the northwestern Pacific. The upper troposphere showed easterly anomaly that converged over the middle-lower reaches of the Yangtze River. A cyclonic anomalous system in South China and an anticyclonic system centered in the Japan Sea enhanced the easterly. Large atmospheric heat source anomalies of opposite signs existed over the western Pacific - the South China Sea, with negative in the great wet-spell and positive in the great dry-spell. The analysis of heat source also revealed positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell over the Yangtze River valley. The changes of the moisture sink and OLR were correspondingly altered, implying the change of heat source anomaly is due to the latent heat releasing of convective activity. Over the southeastern Tibetan Plateau- the Bay of Bengal, the analysis of heat source shows positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell because of latent heating change. The change of divergent wind coexisted with the change of heat source. In the great wet-spell, southerly divergent wind anomaly in the low level and northerly divergent wind anomaly in high-level are seen over South China. These divergent wind anomalies are helpful to the low-level convergence anomaly and high-level divergence anomaly over the Yangtze River valley. The low-level northerly divergent wind anomaly and high-level southerly divergent wind anomaly over South China reduced the low-level convergence and high-level divergence over the Yangtze River valley during the great dry-spell. 展开更多
关键词 anomalous atmospheric circulation heat sources and moisture sinks anomalies great precipitation anomalies in the Yangtze River valley
下载PDF
Development of experimental study on coupled heat and moisture transfer in porous building envelope 被引量:2
3
作者 陈国杰 刘向伟 +2 位作者 陈友明 郭兴国 邓永强 《Journal of Central South University》 SCIE EI CAS 2012年第3期669-674,共6页
A new facility was presented which can expediently and cheaply measure the transient moisture content profile in multi-layer porous building envelope.Then,a common multi-layer porous building envelope was provided,whi... A new facility was presented which can expediently and cheaply measure the transient moisture content profile in multi-layer porous building envelope.Then,a common multi-layer porous building envelope was provided,which was constructed by cement mortar-red brick-cement plaster.With this kind of building envelope installed in the south wall,a well-controlled air-conditioning room was set up in Changsha,which is one of typical zones of hot and humid climate in China.And experiments were carried out to investigate the temperature and moisture distribution in multi-layer building envelope in summer,both in sunny day and rainy day.The results show that,the temperature and humidity at the interface between the brick and cement mortar are seriously affected by the changes of outdoor temperature and humidity,and the relative humidity at this interface keeps more than 80% for a long-term,which can easily trigger the growth of mould.The temperature and humidity at the interface between the brick and cement plaster change a little,and they are affected by the changes of indoor temperature and humidity.The temperature and humidity at the interface of the wall whose interior surface is affixed with a foam plastic wallpaper are generally higher than those of the wall without wallpaper.The heat transfer and moisture transfer in the envelope are coupled strongly. 展开更多
关键词 coupled heat and moisture transfer transient moisture content multi-layer porous building envelope
下载PDF
Coupled Effects of Heat and Moisture of Early-Age Concrete 被引量:1
4
作者 Yang Wang Hanxi Wang +1 位作者 Linwei Yang Li Qian 《Fluid Dynamics & Materials Processing》 EI 2021年第4期845-857,共13页
In order to analyze the coupled influence of temperature and humidity on early-age concrete(including cement and copper tailings),a mathematical model is introduced on the basis of the Krstulovic-Dabic hydration react... In order to analyze the coupled influence of temperature and humidity on early-age concrete(including cement and copper tailings),a mathematical model is introduced on the basis of the Krstulovic-Dabic hydration reaction kinetic equations.In such a framework,the influence of hydration-released heat and water consumption are also taken into account.The results provided by such a model are verified by means of experiments and related sensor measurements.The research results show that this model can adequately predict the internal temperature and the humidity temporal evolution laws. 展开更多
关键词 Composite cementitious materials cement hydration MICRO-STRUCTURE diffusion coefficient coupled of heat and moisture
下载PDF
Effect of Counter-Gradient in the Computation of Turbulent Fluxes of Heat and Moisture in a Regional Model 被引量:2
5
作者 S. S. Vaidya V. N. Lykossov S. S. Singh 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1993年第1期85-94,共10页
The counter-gradient terms in the computations of turbulent fluxes of heat and moisture have been included in the PBL parameterization of a regional model for monsoon prediction. Results show that inclusion of counter... The counter-gradient terms in the computations of turbulent fluxes of heat and moisture have been included in the PBL parameterization of a regional model for monsoon prediction. Results show that inclusion of counter-gradient terms has a marginal impact in the prediction of large scale monsoon circulation and rainfall rates. 展开更多
关键词 Effect of Counter-Gradient in the Computation of Turbulent Fluxes of Heat and moisture in a Regional Model
下载PDF
Heat and Moisture Budgets during the Period of HUBEX/GAME in the Summer of 1998
6
作者 彭京备 宋正山 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第2期245-252,共8页
By using the high-resolution GAME reanalysis data, the heat and moisture budgets during the period of HUBEX/GAME in the summer of 1998 are calculated for exploring the thermodynamic features of Meiyu over the Changjia... By using the high-resolution GAME reanalysis data, the heat and moisture budgets during the period of HUBEX/GAME in the summer of 1998 are calculated for exploring the thermodynamic features of Meiyu over the Changjiang-Huaihe (CH) valley. During the CH Meiyu period, an intensive vertically-integrated heat source and moisture sink are predominant over the heavy rainfall area of the CH valley, accompanied by strong upward motion at 500 hPa. The heat and moisture budgets show that the main diabatic heating component is condensation latent heat released by rainfall. As residual terms, the evaporation and sensible heating are relatively small. Based on the vertical distribution of the heat source and moisture sink, the nature of the rainfall is mixed, in which the convective rainfall is dominant with a considerable percentage of continuous stratiform rainfall. There are similar time evolutions of the main physical parameters (&#9001;Q <SUB>1</SUB>&#9002;, &#9001;Q <SUB>2</SUB>&#9002;, and vertical motion &#969; at 500 hPa). The time variations of &#9001;Q <SUB>1</SUB>&#9002; and &#9001;Q <SUB>2</SUB>&#9002; are in phase with those of &#8722;&#969; <SUB>500</SUB>, and have their main peaks within the CH Meiyu period. This shows the influence of the heat source on the dynamic structure of the atmosphere. The wavelet analyses of those time series display similar multiple timescale characteristics. During the CH Meiyu period, both the synoptic scale(&#8764;6 days) and mesoscale (&#8764;2 days and &#8764;12 hours) increase obviously and cause heavy rainfall as well as the appearances of the maxima of the main physical parameters. Among them, the mesoscale systems are the main factors. 展开更多
关键词 heat and moisture budgets MEIYU the Changjiang-Huaihe valley HUBEX multiple timescale
下载PDF
Applications and verification of a computational energy dynamics model for mine climate simulations 被引量:1
7
作者 G.Danko D.Bahrami C.Stewart 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第4期483-493,共11页
A complete thermodynamic model is described for temperature and heat flow distribution simulation for ventilation networks in underground mines.The method is called the Computational Energy Dynamics(CED)model of the h... A complete thermodynamic model is described for temperature and heat flow distribution simulation for ventilation networks in underground mines.The method is called the Computational Energy Dynamics(CED)model of the heat,mass,and energy transport.The Thermal and Humidity(TH)transport elements of the full model are described for advection,convection,and accumulation,encompassing heat capacity,radiation,latent heat for evaporation,and condensation in the airways,as well as variable heat conduction and accumulation in the rock strata.The thermal flywheel effect for time-dependent temperature field applications is included in the model solution.A CED model validation exercise is described,directly evaluating the iterated,minimized energy balance errors for the mechanical and thermal energy components for each network branch after a converged solution is determined.A simulation example relevant to mine safety and health is shown with the CED-TH model,demonstrating its capabilities in efficiency and accuracy in comparison with measurement results. 展开更多
关键词 Mine climate simulation Dynamic heat flow model Coupled heat and moisture transport Computational energy dynamics Mine safety and health
下载PDF
Simulation of the Hygrothermal Behavior of a Building Envelope Based on Phase Change Materials and a Bio-Based Concrete
8
作者 Dongxia Wu Mourad Rahim +2 位作者 Wendong Li Mohammed El Ganaoui Rachid Bennacer 《Fluid Dynamics & Materials Processing》 EI 2022年第5期1483-1494,共12页
Phase Change Materials(PCMs)have high thermal inertia,and hemp concrete(HC),a bio-based concrete,has strong hygroscopic behavior.In previous studies,PCM has been extensively combined with many materials,however,most o... Phase Change Materials(PCMs)have high thermal inertia,and hemp concrete(HC),a bio-based concrete,has strong hygroscopic behavior.In previous studies,PCM has been extensively combined with many materials,however,most of these studies focused on thermal properties while neglecting hygroscopic aspects.In this study,the two materials have been combined into a building envelope and the related hygrothermal properties have been studied.In particular,numerical studies have been performed to investigate the temperature and relative humidity behavior inside the HC,and the effect of adding PCM on the hygrothermal behavior of the HC.The results show that there is a high coupling between temperature and relative humidity inside the HC,since the relative humidity changes on the second and third days are different,with values of 8%and 4%,respectively.Also,the variation of relative humidity with temperature indicates the dominant influence of temperature on relative humidity variation.With the presence of PCM,the temperature variation inside the HC is damped due to the high thermal inertia of the PCM,which also leads to suppression of moisture evaporation and thus damping of relative humidity variation.On the second and third days,the temperature changes at the central position are reduced by 4.6%and 5.1%,compared to the quarter position.For the relative humidity change,the reductions are 5.3%and 5.4%on the second and third days,respectively.Therefore,PCM,with high thermal inertia,acts as a temperature damper and has the potential to increase the moisture buffering capacity inside the HC.This makes it possible for such a combined envelope to have both thermal and hygric inertia. 展开更多
关键词 Phase change material(PCM) bio-based concrete passive building envelope heat and moisture transfer hygrothermal performance
下载PDF
STUDY OF DEGRADATION MECHANISM AND PACKAGING OF ORGANIC LIGHT EMITTING DEVICES
9
作者 Gu Xu Materials Science and Engineering McMaster University Hamilton, Ontario, L8S 4L7 Canada 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2003年第5期527-531,共5页
Organic Light Emitting Devices (OLED) have attracted much attention recently, for their applications in futureFlat Panel Displays and lighting products. However, their fast degradation remained a major obstacle to the... Organic Light Emitting Devices (OLED) have attracted much attention recently, for their applications in futureFlat Panel Displays and lighting products. However, their fast degradation remained a major obstacle to theircommercialization. Here we present a brief summary of our studies on both extrinsic and intrinsic causes for the fastdegradation of OLEDs. In particular, we focus on the origin of the dark spots by 'rebuilding' cathodes, which confirms thatthe growth of dark spots occurs primarily due to cathode delamination. In the meantime, we recapture the findings from thesearch for suitable OLED packaging materials, in particular polymer composites, which provide both heat dissipation andmoisture resistance, in addition to electrical insulation. 展开更多
关键词 Organic light emitting devices Degradation mechanism Dark spots Cathode rebuilding Polymer composites Heat dissipation and moisture resistance
下载PDF
A Study on Simple Prediction Method of Heat Load: A Use of Linear Approximation Indicial Response in Basements
10
作者 Kyung-Soon Park Hiroaki Kitano Hisaya Nagai 《Journal of Civil Engineering and Architecture》 2013年第4期379-387,共9页
This study was conducted to establish a predictable method for a heat load of an underground structure with sufficient accuracy. As the first step, our previous paper reported the measurement results of field experime... This study was conducted to establish a predictable method for a heat load of an underground structure with sufficient accuracy. As the first step, our previous paper reported the measurement results of field experiments on an underground experimental basement under internal heat generation conditions. Also, it presented the results of numerical analyses on the heat and moisture behavior and the influence of internal heat generation of the experimental basement and ground. However, it is practically impossible to utilize the model of simultaneous heat and moisture transfer at the design phase because the prediction by the model of simultaneous heat and moisture transfer requires a long calculation time. In this paper, the authors present the simple load calculation technique, using a linearized approximation indicial response of the inner surface heat flux in a basement to outdoor air temperature change. In addition, the approximation indicial responses for each part of the single-walled concrete drawn using this technique are arranged. The heat load calculation example of application to the basement of the optional size by this technique is shown. 展开更多
关键词 Underground structure simultaneous heat and moisture transfer linearized prediction method indicial response.
下载PDF
Development and Rapid Intensification of Tropical Cyclone OCKHI(2017)over the North Indian Ocean
11
作者 Geetha B Balachandran S 《Journal of Atmospheric Science Research》 2020年第3期13-22,共10页
Tropical Cyclone OCKHI over the North Indian Ocean during 2017 underwent dramatic development and rapid intensification very close to the land-Sri Lanka,extreme South Indian coast and Lakshadweep area during its initi... Tropical Cyclone OCKHI over the North Indian Ocean during 2017 underwent dramatic development and rapid intensification very close to the land-Sri Lanka,extreme South Indian coast and Lakshadweep area during its initial developmental stage and caused extensive damages over these areas.On examining the physical and structural mechanism involved in such development,it is observed that the initial development was associated with axi-symmetrisation of the vortex that could be associated with Vortex Rossby waves near the eyewall.Associated with the expulsion of high vorticity from the centre during asymmetry mixing,there was outward propagation of eddy angular momentum flux in the lower levels that strengthened a low level anticyclone to the northeast of the TC centre which in turn enhanced the cyclonic inflow near the TC centre.The rapid intensification phase was associated with vertical non-uniform heating with upper and lower tropospheric warming associated with latent heat release in convection.During the mature phase,the system sustained‘very severe’intensity even under increasing vertical shear and lower ocean heat flux under the influence of a break in the sub tropical ridge to the north of the system centre that enhanced the poleward outflow in the upper troposphere. 展开更多
关键词 Tropical cyclone Ockhi Asymmetry Eddy flux convergence Heat and moisture budget
下载PDF
Optimum insulation thickness of external walls by integrating indoor moisture buffering effect: a case study in the hot-summer-cold-winter zone of China
12
作者 Yan-hao FENG Zi-tao YU +1 位作者 Jiang LU Xu XU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第12期998-1012,共15页
In the high-humidity, hot-summer-cold-winter(HSCW) zone of China, the moisture buffering effect in the envelope is found to be significant in optimum insulation thickness. However, few studies have considered the effe... In the high-humidity, hot-summer-cold-winter(HSCW) zone of China, the moisture buffering effect in the envelope is found to be significant in optimum insulation thickness. However, few studies have considered the effects of indoor moisture buffering on the optimum insulation thickness and energy consumption. In this study, we considered the energy load of an exterior wall under moisture transfer from the outdoor to the indoor environment. An optimum insulation thickness was obtained by integrating the P1-P2model. A residential building was selected for the case study to verify the proposed method. Finally, a comparison was made with two other widely used methods, namely the transient heat transfer model(TH) and the coupled heat and moisture transfer model(CHM). The results indicated that the indoor moisture buffering effect on the optimum insulation thickness is 2.54 times greater than the moisture buffering effect in the envelope, and the two moisture buffering effects make opposing contributions to the optimum insulation thickness. Therefore, when TH or CHM was used without considering the indoor moisture buffering effect, the optimum insulation thickness of the southern wall under one air change per hour(1 ACH) and 100% normal heat source may be overestimated by 2.13% to 3. 59%, and the annual energy load on a single wall may be underestimated by 10.10% to 11.44%. The decrease of airtightness and the increase of indoor heat sources may result in a slight reduction of optimum insulation thickness. This study will enable professionals to consider the effects of moisture buffering on the design of insulation thickness. 展开更多
关键词 Insulation thickness optimization Coupled heat and moisture transfer Indoor moisture buffering effect Exterior wall Lifecycle cost
原文传递
Modeling on Heat and Mass Transfer in Stored Wheat during Forced Cooling Ventilation 被引量:29
13
作者 Yuancheng WANG,Haifeng DUAN,Hao ZHANG and Zhaohong FANG College of Thermal Energy Engineering,Shandong Jianzhu University,Jinan 250101,China 《Journal of Thermal Science》 SCIE EI CAS CSCD 2010年第2期167-172,共6页
A mathematical model based on the theory of heat and mass transfer in porous media was developed to simulate the evolution of grain temperature and moisture content in a wheat storage bin during ventilation with cooli... A mathematical model based on the theory of heat and mass transfer in porous media was developed to simulate the evolution of grain temperature and moisture content in a wheat storage bin during ventilation with cooling air at the constant temperature and humidity.Unlike the previous works on this aspect,the present work was not focused on cooling the stored grain by ventilation with ambient air,but with the refrigerated air.Validation was performed by comparing between predicted and measured grain temperature and grain moisture content for two cases.Predicted data were in reasonable good agreement with measured ones.The model and the parameter values used in the model are applicable for predicting temperature and moisture of stored grains under ventilation conditions. 展开更多
关键词 Heat and moisture transfer Numerical simulation AERATION Stored grains
原文传递
NATURE OF PRECIPITATION AND ACTIVITY OF CUMULUS CONVECTION DURING THE 1991 MEIYU SEASON OF CHANGJIANG-HUAIHE RIVER BASIN
14
作者 陆尔 丁一汇 《Acta meteorologica Sinica》 SCIE 1998年第1期75-91,共17页
Seasonal variability regarding the nature of precipitation and the activity of cumulus convection during the 1991 Meiyu season of Changjiang-Huaihe River Basin(Jianghuai)has been investigated by calculating apparent h... Seasonal variability regarding the nature of precipitation and the activity of cumulus convection during the 1991 Meiyu season of Changjiang-Huaihe River Basin(Jianghuai)has been investigated by calculating apparent heat source/apparent moisture sink and analyzing TBB(cloud-top blackbody radiation temperature)data.It is found that three periods of strong ascending motion during the Meiyu season lead to three episodes of heavy rain,and the latent heat due to the precipitation is of the sole heat source of the atmosphere.The nature of precipitation shows distinct seasonal variability,from frontal precipitation of the first episode to the extremely strong convective precipitation of the third episode.TBB field of East Asia may well reflect not only the intensity of convection and rainfall,but also the movement of rain belt and convection belt.In the whole Meiyu season.convection belt mainly stays in Jianghuai.but may shift within the domain of East Asia.Its locating in Jianghuai or not determines the maintenance or break of Meiyu.In the third episode,the narrow convection belt over Jianghuai is mainly caused by southwest monsoon which takes moist and convective atmosphere from tropical ocean. 展开更多
关键词 apparent heat source and moisture sink TBB data precipitation nature convection activity heavy rain
原文传递
Multi-Physics Analyses of Selected Civil Engineering Concrete Structures
15
作者 J.Kruis T.Koudelka T.Krejcí 《Communications in Computational Physics》 SCIE 2012年第8期885-918,共34页
This paper summarizes suitable material models for creep and damage of concrete which are coupled with heat and moisture transfer.The fully coupled approach or the staggered coupling is assumed.Governing equations are... This paper summarizes suitable material models for creep and damage of concrete which are coupled with heat and moisture transfer.The fully coupled approach or the staggered coupling is assumed.Governing equations are spatially discretized by the finite element method and the temporal discretization is done by the generalized trapezoidal method.Systems of non-linear algebraic equations are solved by the Newton method.Development of an efficient and extensible computer code based on the C++programming language is described.Finally,successful analyses of two real engineering problems are described. 展开更多
关键词 Coupled problems heat and moisture transfer CREEP damage mechanics hydrothermo-mechanical analysis efficient solvers analysis of containment watertightness of foundation slabs
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部