期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Microstructure of Fine Clay Soils Stabilized with Sugarcane Molasses
1
作者 Narcisse Malanda Nice Ngouallat Mfoutou +1 位作者 Erman Eloge Nzaba Madila Paul Louzolo-Kimbembe 《Open Journal of Civil Engineering》 2022年第2期247-269,共23页
Sugar cane molasses has proved cohesive and excellent performance on soil aggregates (fine particles). However, the microstructure of consolidated soil by the molasses is not yet subjected to research. The analysis re... Sugar cane molasses has proved cohesive and excellent performance on soil aggregates (fine particles). However, the microstructure of consolidated soil by the molasses is not yet subjected to research. The analysis results of sample without molasses (0%) and consolidated samples at 8%, 12%, and 16% show that the molasses acts on the structure of clayey fine soil developing its microstructure of airy matrix type (sample without molasses (0%) to a microstructure of a qualified type, more solid. Consolidated samples to 8%, 12%, 16% of molasses). We also observe the presence of inter-aggregate pores (mesopores) of similar size in all samples. The results of porosimetrical analyses (BJH) of the sample without molasses and consolidated samples to 8%, 12%, and 16% show that simultaneous porous volumes of samples are reduced with the increasing of molasses quantity. This latter, therefore, acts on the porous volume (micropore 2 nm and mesopore 9 nm) by reducing them which really means, molasses occupies the porous volume of the sample. However, this sample seems not to have any effect on the size of mesopores 9 nm. Thus, this product induces the evolution of the soil structure towards the highly dense and condensed structure. Consequently, materials in consolidated soil by molasses will have mechanical properties far superior to those of materials consolidated soil without molasses. 展开更多
关键词 MICROSTRUCTURE Consolidated Clayey Fine Soil molasses of sugar cane MESOPORE MICROPORE Specific Surface Area
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部