In the injection molding process, plastic products are difficult to demold due to friction force between the cavity and products, thus, finished products might be deformed or damaged. Therefore, designers should add a...In the injection molding process, plastic products are difficult to demold due to friction force between the cavity and products, thus, finished products might be deformed or damaged. Therefore, designers should add a draft angle to the geometric surface of products, which is parallel to the unloading direction, in order to help the products eject smoothly from the cavity. This study uses CAD software as the main architecture to develop the function of automatic draft angle recognition and construction. The study is divided into three stages. First, the geometric features of products are identified in the CAD model by induced algorithm, then the quilts to be added in the draft design are determined and classified. Finally, draft angles are created in different ways according to different surfaces. An algorithm suitable for automatic draft recognition and construction, as well as the constraints of automatic creation of draft angle, is proposed. The feature recognition algorithm of this study can automatically inspect 90% of the surfaces to be drafted, and the automatic creation of draft features can economize 80% of required mouse clicks, thus, effectively increasing draft angle design efficiency, and preventing errors in mold design and manufacturing.展开更多
This paper describes the structure of the molds for making polycrystalline diamond compact (PDC) drilling bits. It represents the mold shapes by using the Finite Element technique, and compares the analytical result...This paper describes the structure of the molds for making polycrystalline diamond compact (PDC) drilling bits. It represents the mold shapes by using the Finite Element technique, and compares the analytical results with available experimental data. Based on the results of Finite Element analysis, some areas of stress concentrations are determined, and modifications made, to the PDC (polycrystalline diamond compact) mold. A displacement plot and several stress contour plots are presented. Techniques of the mold design are discussed.展开更多
On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and case-based reasoning (CBR) into the c...On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and case-based reasoning (CBR) into the computer-aided design is described by combining with the actual characteristic in injection mold design, and the design process of case-based reasoning method is also given. A case library including the information of parting surface is built with the index of main shape features, The automatic design of the mold parting surface is realized combined with the forward-reasoning method and the similarity solution procedure. The rule knowledge library is also founded including the knowledge, principles and experiences for parting surface design. An example is used to show the validity of the method, and the quality and the efficiency of the mold design are improved.展开更多
This study investigated the relationship between a subject’s evaluation of injection molding machines (IMMs) and formal design features using Kansei engineering. This investigation used 12 word pairs to evaluate the ...This study investigated the relationship between a subject’s evaluation of injection molding machines (IMMs) and formal design features using Kansei engineering. This investigation used 12 word pairs to evaluate the IMM configurations and employed the semantic differential method to explore the perception of 60 interviewees of 12 examples. The relationship between product feature design and corresponding words was derived by multiple regression analysis. Factor analysis reveals that the 12 examples can be categorized as two styles—advanced style and succinct style. For the advanced style, an IMM should use a rectangular form for the clamping-unit cover and a full-cover for the injection-unit. For the succinct style, the IMM configuration should use a beveled form for the safety cover and a vertical rectangular form for the clamping-unit cover. Quantitative data and suggested guidelines for the relationship between design features and interviewee evaluations are useful to product designers when formulating design strategies.展开更多
A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures meas...A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures measured using thermocouples buried in different positions of the mold with the original designed cooling system were analyzed to determine the corresponding heat flux profile. This profile was then used for simulation to predict the temperature distribution and the thermal stress distribution of the molds. The predicted temperatures during operation matched the plant measurements. The results showed that the maximum temperature, about 635 K in the wide hot surface, was found about 60 mm below the meniscus and 226 mm from the center of the mold. For the mold with the type I modified design, there was an insignificant decrease in temperature of about 5 K, and for the mold with the type II modified design, the maximum temperature was decreased by about 15 K and the temperature of the hot surface was distributed more uniformly along the length of the mold. The corresponding maximum thermal stress at the hot surface of the mold was reduced from 408 MPa to 386 MPa with the type II modified design. The results indicated that the modified design II is beneficial to the increase of mold life and the quality of casting slabs.展开更多
文摘In the injection molding process, plastic products are difficult to demold due to friction force between the cavity and products, thus, finished products might be deformed or damaged. Therefore, designers should add a draft angle to the geometric surface of products, which is parallel to the unloading direction, in order to help the products eject smoothly from the cavity. This study uses CAD software as the main architecture to develop the function of automatic draft angle recognition and construction. The study is divided into three stages. First, the geometric features of products are identified in the CAD model by induced algorithm, then the quilts to be added in the draft design are determined and classified. Finally, draft angles are created in different ways according to different surfaces. An algorithm suitable for automatic draft recognition and construction, as well as the constraints of automatic creation of draft angle, is proposed. The feature recognition algorithm of this study can automatically inspect 90% of the surfaces to be drafted, and the automatic creation of draft features can economize 80% of required mouse clicks, thus, effectively increasing draft angle design efficiency, and preventing errors in mold design and manufacturing.
文摘This paper describes the structure of the molds for making polycrystalline diamond compact (PDC) drilling bits. It represents the mold shapes by using the Finite Element technique, and compares the analytical results with available experimental data. Based on the results of Finite Element analysis, some areas of stress concentrations are determined, and modifications made, to the PDC (polycrystalline diamond compact) mold. A displacement plot and several stress contour plots are presented. Techniques of the mold design are discussed.
文摘On the basis of the comprehensive analysis about the automatic generation of the injection mold parting surface, the parting surface design method which introduces knowledge and case-based reasoning (CBR) into the computer-aided design is described by combining with the actual characteristic in injection mold design, and the design process of case-based reasoning method is also given. A case library including the information of parting surface is built with the index of main shape features, The automatic design of the mold parting surface is realized combined with the forward-reasoning method and the similarity solution procedure. The rule knowledge library is also founded including the knowledge, principles and experiences for parting surface design. An example is used to show the validity of the method, and the quality and the efficiency of the mold design are improved.
文摘This study investigated the relationship between a subject’s evaluation of injection molding machines (IMMs) and formal design features using Kansei engineering. This investigation used 12 word pairs to evaluate the IMM configurations and employed the semantic differential method to explore the perception of 60 interviewees of 12 examples. The relationship between product feature design and corresponding words was derived by multiple regression analysis. Factor analysis reveals that the 12 examples can be categorized as two styles—advanced style and succinct style. For the advanced style, an IMM should use a rectangular form for the clamping-unit cover and a full-cover for the injection-unit. For the succinct style, the IMM configuration should use a beveled form for the safety cover and a vertical rectangular form for the clamping-unit cover. Quantitative data and suggested guidelines for the relationship between design features and interviewee evaluations are useful to product designers when formulating design strategies.
基金financially supported by the National Natural Science Foundation of China(Nos.51525401,51274054,U1332115,51401044)the Science and Technology Planning Project of Dalian(No.2013A16GX110)+1 种基金the China Postdoctoral Science Foundation(2015M581331)the Fundamental Research Funds for the Central Universities
文摘A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures measured using thermocouples buried in different positions of the mold with the original designed cooling system were analyzed to determine the corresponding heat flux profile. This profile was then used for simulation to predict the temperature distribution and the thermal stress distribution of the molds. The predicted temperatures during operation matched the plant measurements. The results showed that the maximum temperature, about 635 K in the wide hot surface, was found about 60 mm below the meniscus and 226 mm from the center of the mold. For the mold with the type I modified design, there was an insignificant decrease in temperature of about 5 K, and for the mold with the type II modified design, the maximum temperature was decreased by about 15 K and the temperature of the hot surface was distributed more uniformly along the length of the mold. The corresponding maximum thermal stress at the hot surface of the mold was reduced from 408 MPa to 386 MPa with the type II modified design. The results indicated that the modified design II is beneficial to the increase of mold life and the quality of casting slabs.