In this paper, an algorithm for simulating fluid flow and heat transfer for mold filling of shaped castings is presented. The main features of the algorithm include: 1) a simple but practical technique based on VOF me...In this paper, an algorithm for simulating fluid flow and heat transfer for mold filling of shaped castings is presented. The main features of the algorithm include: 1) a simple but practical technique based on VOF method to determine free surface, 2) an explicit scheme of enthalpy to solve the energy equation more efficiently, and 3) an effective treatment to modify the flux deviation due to pressure iteration. In order to verify these methods, well controlled experiments have been repeatedly done with both water analog and gray iron pouring experiments to record the flow patterns and temperature variations. The calculated results are in accordance with the experimental ones. For the applications, the simulated initial temperature distribution right after mold filling was used to analyse subsequent solidification and to predict shrinkage defects. Actual castings were poured and tested in a foundry plant. The reuslts show that the defects predication with considering fluid flow effects is more precise than that without considering the effects.展开更多
A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow...A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice.展开更多
文摘In this paper, an algorithm for simulating fluid flow and heat transfer for mold filling of shaped castings is presented. The main features of the algorithm include: 1) a simple but practical technique based on VOF method to determine free surface, 2) an explicit scheme of enthalpy to solve the energy equation more efficiently, and 3) an effective treatment to modify the flux deviation due to pressure iteration. In order to verify these methods, well controlled experiments have been repeatedly done with both water analog and gray iron pouring experiments to record the flow patterns and temperature variations. The calculated results are in accordance with the experimental ones. For the applications, the simulated initial temperature distribution right after mold filling was used to analyse subsequent solidification and to predict shrinkage defects. Actual castings were poured and tested in a foundry plant. The reuslts show that the defects predication with considering fluid flow effects is more precise than that without considering the effects.
文摘A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice.