Molecular motors are nature's nano-devices and the essential agents of movement that are an integral part of many living organisms. The supramolecular motor, called Nuclear Pore Complex (NPC), controls the transpor...Molecular motors are nature's nano-devices and the essential agents of movement that are an integral part of many living organisms. The supramolecular motor, called Nuclear Pore Complex (NPC), controls the transport of all cellular material be- tween the cytoplasm and the nucleus that occurs naturally in biological cells of many organisms. In order to understand the design characteristics of the NPC, we developed a microdevice for drug/fluidic transport mimicking the coarse-grained repre- sentation of the NPC geometry through computational fluid dynamic analysis and optimization. Specifically, the role of the central plug in active fluidic/particle transport and passive transport (without central plug) was investigated. Results of flow rate, pressure and velocity profiles obtained from the models indicate that the central plug plays a major role in transport through this biomolecular machine. The results ofthis investigation show that fluidic transport and flow passages are important factors in designing NPC based nano- and micro-devices for drug delivery.展开更多
A fluctuating ratchet model of non-Markov process is presented to describe the processive movement of molecular motors of single-headed kinesin KIF1A, where the fluctuation perturbation to the local potential is intro...A fluctuating ratchet model of non-Markov process is presented to describe the processive movement of molecular motors of single-headed kinesin KIF1A, where the fluctuation perturbation to the local potential is introduced and the detailed ATPase pathway of the motor is included. The theoretical results show good quantitative agreement with the previous experimental ones.展开更多
Molecular motors are proteins or protein complexes which function as transporting engines in biological cells. This paper models the tether between motor and its cargo as a symmetric linear potential. Different from E...Molecular motors are proteins or protein complexes which function as transporting engines in biological cells. This paper models the tether between motor and its cargo as a symmetric linear potential. Different from Elston and Peskin's work for which performance of the system was discussed only in some limiting cases, this study produces analytic solutions of the problem for general cases by simplifying the transport system into two physical states, which makes it possible to discuss the dynamics of the motor--cargo system in detail. It turns out that the tether strength between motor and cargo should be greater than a threshold or the motor will fail to transport the cargo, which was not discussed by former researchers yet. Value of the threshold depends on the diffusion coefficients of cargo and motor and also on the strength of the Brownian ratchets dragging the system. The threshold approaches a finite constant when the strength of the ratchet tends to infinity.展开更多
Operation of a laser-driven nano-motor inevitably generates a non-trivial amount of heat, which can possibly lead to instability or even hinder the motor's continual running. This work quantitatively examines the ove...Operation of a laser-driven nano-motor inevitably generates a non-trivial amount of heat, which can possibly lead to instability or even hinder the motor's continual running. This work quantitatively examines the overheating problem for a recently proposed laser-operated molecular locomotive. We present a single-molecule cooling theory, in which molecular details of the locomotive system are explicitly treated. This theory is able to quantitatively predict cooling efficiency for various candidates of molecular systems for the locomotive, and also suggests concrete strategies for improving the locomotive's cooling. It is found that water environment is able to cool the hot locomotive down to room temperature within 100 picoseconds after photon absorption. This cooling time is a few orders of magnitude shorter than the typical time for laser operation, effectively preventing any overheating for the nano-locomotive. However, when the cooling is less effective in non-aqueous environment, residual heat may build up. A continuous running of the motor will then lead to a periodic thermodynamics, which is a common character of many laser-operated nano-devices.展开更多
Molecular motors play an important role in the organization of cytoskeletal filament networks. These nanometer-sized natural molecular machines opened up a new frontier of nano-technology. This article describes biomo...Molecular motors play an important role in the organization of cytoskeletal filament networks. These nanometer-sized natural molecular machines opened up a new frontier of nano-technology. This article describes biomolecular nano-machines, their internal structures, and dynamical interactions between molecular motors and their molecular tracks which reorganize a network of long protein filaments, particularly during cell division to form cytoskeleton of daughter cells. Towards the end, the article also takes up some still-to-be resolved matters and prospects for future developments in this exciting multidisciplinary area of science.展开更多
We report ab initio calculations of the transport behavior of a phenyl substituted molecular motor. The calculated results show that the transport behavior of the device is sensitive to the rotation degree of the roto...We report ab initio calculations of the transport behavior of a phenyl substituted molecular motor. The calculated results show that the transport behavior of the device is sensitive to the rotation degree of the rotor part. When the rotor part is parallel with the stator part, a better rectifying performance can be found in the current-voltage curve. However, when the rotor part revolves to vertical with the stator part, the currents in the positive bias region decrease slightly. More importantly, the rectifying performance disappears. Thus this offers us a new method to modulate the rectifying behavior in molecular devices.展开更多
Objective In kinesin-3,the neck coil correlates with the following segments to form an extended neck that contains a characteristic hinge diverse from a proline in KIF13B to a long flexible linker in KIF1A.The functio...Objective In kinesin-3,the neck coil correlates with the following segments to form an extended neck that contains a characteristic hinge diverse from a proline in KIF13B to a long flexible linker in KIF1A.The function of this neck hinge for controlling processive movement,however,remains unclear.Methods We made a series of modifications to the neck hinges of KIF13B and KIF1A and tested their movement using a single-molecule motility assay.Results In KIF13B,the insertion of flexible residues before or after the proline differentially impacts the processivity or velocity,while the removal of this proline increases the both.In KIF1A,the deletion of entire flexible neck hinge merely enhances the processivity.The engineering of these hinge-truncated necks of kinesin-3 into kinesin-1 similarly boosts the processive movement of kinesin-1.Conclusion The neck hinge in kinesin-3 controls its processive movement and proper modifications tune the motor motility,which provides a novel strategy to reshape the processive movement of kinesin motors.展开更多
The key to high-level encryption and anti-counterfeiting techniques is the storage of multiple levels of distinct information that can be individually and precisely addressed by certain stimuli.This continues to be a ...The key to high-level encryption and anti-counterfeiting techniques is the storage of multiple levels of distinct information that can be individually and precisely addressed by certain stimuli.This continues to be a formidable challenge as the concealed images or codes must be read with fast response and high resolution without cross-talk to the first layer of information.Here,we report a non-fluorescencebased strategy to establish responsive encryption labels taking advantage of solely tuning multiple optical patterns of cholesteric liquid crystal(CLC)microdroplets doped with light-driven molecular motors.The photo-triggered unidirectional rotation of the motor induced not only changes in the helical twist power value but the opposite helical orientation of the superstructure in CLCs as well,resulting in changes in both the structural color and the selective reflection of circularly polar light.The designed labels,which featured highly selective addressability of dual-level distinct information,good reversibility,and viewing angle-independence,were applied to build devices for daily practical use,demonstrating great potential in anti-counterfeiting technology and provide a versatile platform for enhanced data protection and encryption of authentic information.展开更多
During the assembly of many viruses, a powerful molecular motor packages the genome into a preassembled capsid. The Bacillus subtilis phage φ29 is an excellent model system to investigate the DNA packaging mechanism ...During the assembly of many viruses, a powerful molecular motor packages the genome into a preassembled capsid. The Bacillus subtilis phage φ29 is an excellent model system to investigate the DNA packaging mechanism because of its highly efficient in vitro DNA packaging activity and the development of a single-molecule packaging assay. Here we make use of structural and biochemical experimental data to build a physical model of DNA packaging by the φ29 DNA packaging motor. Based on the model, various dynamic behaviours such as the packaging rate, pause frequency and slip frequency under different ATP concentrations, ADP concentrations, external loads as well as capsid fillings are studied by using Monte Carlo simulation. Good agreement is obtained between the simulated and available experimental results. Moreover, we make testable predictions that should guide future experiments related to motor function.展开更多
We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of an elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in ou...We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of an elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in our system were the load, the random thermal noise and an unbiased thermal fluctuation. We observe differences in the dynamic behaviour if hydrodynamic interactions are considered as compared with the case without them. In conclusion, hydrodynamic interactions influence substantially the dynamics of a ratchet dimer Brownian motor;consequently they have to be considered in any theory where the molecular motors are in a liquid medium.展开更多
基金The authors thank the US National Science Foundation for sponsoring the research reported in this study through a grant ECCS- 1058067.
文摘Molecular motors are nature's nano-devices and the essential agents of movement that are an integral part of many living organisms. The supramolecular motor, called Nuclear Pore Complex (NPC), controls the transport of all cellular material be- tween the cytoplasm and the nucleus that occurs naturally in biological cells of many organisms. In order to understand the design characteristics of the NPC, we developed a microdevice for drug/fluidic transport mimicking the coarse-grained repre- sentation of the NPC geometry through computational fluid dynamic analysis and optimization. Specifically, the role of the central plug in active fluidic/particle transport and passive transport (without central plug) was investigated. Results of flow rate, pressure and velocity profiles obtained from the models indicate that the central plug plays a major role in transport through this biomolecular machine. The results ofthis investigation show that fluidic transport and flow passages are important factors in designing NPC based nano- and micro-devices for drug delivery.
基金Project supported by the National Natural Science Foundation of China (Nos. 60025516 and 10334100).
文摘A fluctuating ratchet model of non-Markov process is presented to describe the processive movement of molecular motors of single-headed kinesin KIF1A, where the fluctuation perturbation to the local potential is introduced and the detailed ATPase pathway of the motor is included. The theoretical results show good quantitative agreement with the previous experimental ones.
基金supported by the National Natural Science Foundation of China (Grant No. 30600121)Doctoral Foundation of Shandong Province of China (Grant No. 2007BS09002)
文摘Molecular motors are proteins or protein complexes which function as transporting engines in biological cells. This paper models the tether between motor and its cargo as a symmetric linear potential. Different from Elston and Peskin's work for which performance of the system was discussed only in some limiting cases, this study produces analytic solutions of the problem for general cases by simplifying the transport system into two physical states, which makes it possible to discuss the dynamics of the motor--cargo system in detail. It turns out that the tether strength between motor and cargo should be greater than a threshold or the motor will fail to transport the cargo, which was not discussed by former researchers yet. Value of the threshold depends on the diffusion coefficients of cargo and motor and also on the strength of the Brownian ratchets dragging the system. The threshold approaches a finite constant when the strength of the ratchet tends to infinity.
基金supported by the National Natural Science Foundation of China (Grant No 90403006)Chinese Ministry of Education (the Programme for New Century Excellent Talents in University)+1 种基金Shanghai Education Development Foundation of China (the Shuguang Programme)Shanghai Pujiang Programme of China (Grant No 05PJ14019)
文摘Operation of a laser-driven nano-motor inevitably generates a non-trivial amount of heat, which can possibly lead to instability or even hinder the motor's continual running. This work quantitatively examines the overheating problem for a recently proposed laser-operated molecular locomotive. We present a single-molecule cooling theory, in which molecular details of the locomotive system are explicitly treated. This theory is able to quantitatively predict cooling efficiency for various candidates of molecular systems for the locomotive, and also suggests concrete strategies for improving the locomotive's cooling. It is found that water environment is able to cool the hot locomotive down to room temperature within 100 picoseconds after photon absorption. This cooling time is a few orders of magnitude shorter than the typical time for laser operation, effectively preventing any overheating for the nano-locomotive. However, when the cooling is less effective in non-aqueous environment, residual heat may build up. A continuous running of the motor will then lead to a periodic thermodynamics, which is a common character of many laser-operated nano-devices.
文摘Molecular motors play an important role in the organization of cytoskeletal filament networks. These nanometer-sized natural molecular machines opened up a new frontier of nano-technology. This article describes biomolecular nano-machines, their internal structures, and dynamical interactions between molecular motors and their molecular tracks which reorganize a network of long protein filaments, particularly during cell division to form cytoskeleton of daughter cells. Towards the end, the article also takes up some still-to-be resolved matters and prospects for future developments in this exciting multidisciplinary area of science.
基金Supported by the Science and Technology Plan of Hunan Province under Grant No 2014SK3274
文摘We report ab initio calculations of the transport behavior of a phenyl substituted molecular motor. The calculated results show that the transport behavior of the device is sensitive to the rotation degree of the rotor part. When the rotor part is parallel with the stator part, a better rectifying performance can be found in the current-voltage curve. However, when the rotor part revolves to vertical with the stator part, the currents in the positive bias region decrease slightly. More importantly, the rectifying performance disappears. Thus this offers us a new method to modulate the rectifying behavior in molecular devices.
文摘Objective In kinesin-3,the neck coil correlates with the following segments to form an extended neck that contains a characteristic hinge diverse from a proline in KIF13B to a long flexible linker in KIF1A.The function of this neck hinge for controlling processive movement,however,remains unclear.Methods We made a series of modifications to the neck hinges of KIF13B and KIF1A and tested their movement using a single-molecule motility assay.Results In KIF13B,the insertion of flexible residues before or after the proline differentially impacts the processivity or velocity,while the removal of this proline increases the both.In KIF1A,the deletion of entire flexible neck hinge merely enhances the processivity.The engineering of these hinge-truncated necks of kinesin-3 into kinesin-1 similarly boosts the processive movement of kinesin-1.Conclusion The neck hinge in kinesin-3 controls its processive movement and proper modifications tune the motor motility,which provides a novel strategy to reshape the processive movement of kinesin motors.
基金supported financially by the National Key R&D Program of China(grant no.2020YFE0100200)Science and Technology Projects in Guangzhou(grant no.202201000008)+2 种基金Guangdong Provincial Key Laboratory of Optical Information Materials and Technology(grant no.2017B030301007)the Netherlands Ministry of Education,Culture and Science(Gravitation Program 024.001.035 to B.L.F.)S.X.acknowledges the fellowship of China Postdoctoral Science Foundation(grant no.2022M711224).
文摘The key to high-level encryption and anti-counterfeiting techniques is the storage of multiple levels of distinct information that can be individually and precisely addressed by certain stimuli.This continues to be a formidable challenge as the concealed images or codes must be read with fast response and high resolution without cross-talk to the first layer of information.Here,we report a non-fluorescencebased strategy to establish responsive encryption labels taking advantage of solely tuning multiple optical patterns of cholesteric liquid crystal(CLC)microdroplets doped with light-driven molecular motors.The photo-triggered unidirectional rotation of the motor induced not only changes in the helical twist power value but the opposite helical orientation of the superstructure in CLCs as well,resulting in changes in both the structural color and the selective reflection of circularly polar light.The designed labels,which featured highly selective addressability of dual-level distinct information,good reversibility,and viewing angle-independence,were applied to build devices for daily practical use,demonstrating great potential in anti-counterfeiting technology and provide a versatile platform for enhanced data protection and encryption of authentic information.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10834014 and 10674173)the National Basic Research Program of China (Grant No 2009CB930704)
文摘During the assembly of many viruses, a powerful molecular motor packages the genome into a preassembled capsid. The Bacillus subtilis phage φ29 is an excellent model system to investigate the DNA packaging mechanism because of its highly efficient in vitro DNA packaging activity and the development of a single-molecule packaging assay. Here we make use of structural and biochemical experimental data to build a physical model of DNA packaging by the φ29 DNA packaging motor. Based on the model, various dynamic behaviours such as the packaging rate, pause frequency and slip frequency under different ATP concentrations, ADP concentrations, external loads as well as capsid fillings are studied by using Monte Carlo simulation. Good agreement is obtained between the simulated and available experimental results. Moreover, we make testable predictions that should guide future experiments related to motor function.
文摘We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of an elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in our system were the load, the random thermal noise and an unbiased thermal fluctuation. We observe differences in the dynamic behaviour if hydrodynamic interactions are considered as compared with the case without them. In conclusion, hydrodynamic interactions influence substantially the dynamics of a ratchet dimer Brownian motor;consequently they have to be considered in any theory where the molecular motors are in a liquid medium.