The model of ion transportation through graphene nanochannels is established by the molecular dynamics simulation method. Statistics of the electric potential and charge distribution are made, respectively, on both si...The model of ion transportation through graphene nanochannels is established by the molecular dynamics simulation method. Statistics of the electric potential and charge distribution are made, respectively, on both sides of graphene nanopore with various diameters. Then, their changing relationship with respect to the nanopore diameter is determined. When applying a uniform electric field, polar water molecules are rearranged so that the corresponding relationship between the polarized degree of these molecules and the nanopore diameter can be created. Based on the theoretical model of ion transportation through nanochannels,the changing relationship between the concentration of anions/cations in nanochannels and bulk solution concentration is quantitatively analyzed. The results show that the increase of potential drop and charge accumulation, as well as a more obvious water polarization, will occur with the decrease of nanopore diameter. In addition, hydrogen ion concentration has a large proportion in nanochannels with a sodium chloride(NaCl) solution at a relative low concentration. As the NaCl concentration increases, the concentration appreciation of sodium ions tends to be far greater than the concentration drop of chloride ions. Therefore, sodium ion concentration makes more contribution to ionic conductance.展开更多
In this paper molecular dynamics simulations are performed to study the accumulation behaviour of N2 and H2 at water/graphite interface under ambient temperature and pressure. It finds that both N2 and H2 molecules ca...In this paper molecular dynamics simulations are performed to study the accumulation behaviour of N2 and H2 at water/graphite interface under ambient temperature and pressure. It finds that both N2 and H2 molecules can accumulate at the interface and form one of two states according to the ratio of gas molecules number to square of graphite surface from our simulation results: gas films (pancake-like) for a larger ratio and nanobubbles for a smaller ratio. In addition, we discuss the stabilities of nanobubbles at different environment temperatures. Surprisingly, it is found that the density of both kinds of gas states can be greatly increased, even comparable with that of the liquid N2 and liquid H2. The present results are expected to be helpful for the understanding of the stable existence of gas film (pancake-like) and nanobubbles.展开更多
Molecular dynamics simulations have been used to study two topics of water molecules on hydrophobic surfaces. Some properties of the nanobubbles with different ingredients and behavior of single water chains in sin- g...Molecular dynamics simulations have been used to study two topics of water molecules on hydrophobic surfaces. Some properties of the nanobubbles with different ingredients and behavior of single water chains in sin- gle-walled carbon nanochannels are exploited. Molecular simulations show that the density of the N2 and H2 are quite high, which is critical for the stability of the nanobubbles and may have potential applications, such as hydrogen storage, incorporated with recent experimental method to controllably produce hydrogen nanobubbles. The water molecules inside the nanochannel show an unexpected directed motion with long time period, which is indispensable in the future study of the dynamics of biological channels.展开更多
A molecular dynamics (MD) model of the fluidic electrokinetic transport in a nano-scale channel with two bulk sinks was presented, and the process of ion transport in the nanochannel was simulated in this paper. The m...A molecular dynamics (MD) model of the fluidic electrokinetic transport in a nano-scale channel with two bulk sinks was presented, and the process of ion transport in the nanochannel was simulated in this paper. The model consists of two water sinks at the two ends and a pump in the middle, which is different from a single pump model in previous MD simulations. Simulation results show that the charged surfaces of the nanochannel result in the depletion of co-ions and the enrichment of counterions in the nanochannel. A stable current is induced because of the motion of ions when an external electric field is applied across the nanochannel, and the current in the pump region is mainly induced by the motion of counterions. In addition, the ion number in the pump region rapidly decreases as the external electric field is applied. In the equilibrated system, the electrically neutral character in the pump region is destroyed and this region displays a certain electrical character, which depends on the surface charge. The ion distribution is greatly different from the results predicted by the continuum theory, e.g. a smaller peak value of Na+ concentration appears near the wall. The transport efficiency of counterions (co-ions) can be effectively increased (decreased) by increasing the surface charge density. The simulation results demonstrate that the ion distribution in the electric double layer (EDL) of a nanochannel cannot be exactly described by the classical Gouy-Chapman-Stern (GCS) theory model. The mechanism of some special experimental phenomena in a nanochannel and the effect of the surface charge density on the ion-transport efficiency were also explored to provide some theoretical insights for the design and application of nano-scale fluidic pumps.展开更多
In view of the continued disputes on the fundamental question of whether the surface tension of a vapour bubble in liquid argon increases, or decreases, or remains unchanged with the increase of curvature radius, a cy...In view of the continued disputes on the fundamental question of whether the surface tension of a vapour bubble in liquid argon increases, or decreases, or remains unchanged with the increase of curvature radius, a cylindrical vapour bubble of argon is studied by molecular dynamics simulation in this paper instead of spherical vapour bubble so as to reduce the statistical error. So far, the surface tension of the cylindrical vapour bubble has not been studied by molecular dynamics simulation in the literature. Our results show that the surface tension decreases with radius increasing. By fitting the Tolman equation with our data, the Tolman length σ = -0.6225 sigma is given under cut-off radius 2.5σ, where σ = 0.3405 nm is the diameter of an argon atom. The Tolman length of Ar being negative is affirmed and the Tolman length of Ar being approximately zero given in the literature is negated, and it is pointed out that this error is attributed to the application of the inapplicable empirical equation of state and the neglect of the difference between surface tension and an equimolar surface.展开更多
The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when t...The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when the nanoparticles reach near each other, the strong interatomic force will make them attach together. This aggrega- tion continues until all nanoparticles make a continuous cluster. The effect of altering the external force magnitude causes changes in the agglomeration rate and system enthalpy. The density and velocity profiles are shown for two systems, i.e., argon (Ar)-copper (Cu) nanofluid and simple Ar fluid between two Cu walls. The results show that using nanopar- ticles changes the base fluid particles ordering along the nanochannel and increases the velocity. Moreover, using nanoparticles in simple fluids can increase the slip length and push the near-wall fluid particles into the main flow in the middle of the nanochannel.展开更多
A physical model of bulk-nanochannel-bulk with buffer baths is built up using nonequilibrium molecular dynamics (MD) simulation to study the effects of vibrating silicon atoms on the viscosity of aqueous NaCl soluti...A physical model of bulk-nanochannel-bulk with buffer baths is built up using nonequilibrium molecular dynamics (MD) simulation to study the effects of vibrating silicon atoms on the viscosity of aqueous NaCl solutions confined in the nanochannel. The simulation is performed under different moving speeds of the upper wall, different heights and different surface charge densities in the nanochannel. The simulation results indicate that with the increase in the surface charge density and the decrease in the nanochannel height and the shear rate, the vibration effect of silicon atoms on the shear viscosity of the confined fluid in the nanochannel cannot be ignored. Compared with still silicon atoms, the vibrating silicon atoms result in the decrease in the viscosity when the height of the nanochannel is less than 0.8 nm and the shear rate is less than 1.0 ×10^11 s^-1, and the effect of the vibrating silicon atoms on the shear viscosity is significant when the shear rate is small. This is due to the fact that the vibrating silicon atoms weaken the interactions between the counter-ions (Na^+ ) and the charged surface.展开更多
The widely used micro-flow wall-boundary conditions for lattice Boltzmann method(LBM)are evaluated in a force driven combined nanochannel flow.The flow field consists of a two-dimensional nanochannel(mother channel)of...The widely used micro-flow wall-boundary conditions for lattice Boltzmann method(LBM)are evaluated in a force driven combined nanochannel flow.The flow field consists of a two-dimensional nanochannel(mother channel)of an infinite length having flat plates of a finite length inside.The flat plate is set above the bottom wall of the nanochannel with a narrow gap.The flow,thus,develops through this narrow gap(narrower channel)and the other side of the plate(wide gap).The Knudsen number based on the mother channel height is Kn=0.14 whereas the characteristic Knudsen number in the narrower channel is 1.1.To obtain the reference data,the molecular dynamics(MD)simulation is performed with a fully diffusive wall condition.The LBMs are based on the lattice BGK model and with the bounce-back/specular reflection(BSBC)and the diffuse scattering(DSBC)wall boundary conditions.The relaxation time is modified to include sensitivity to Kn.The DSBC shows generally satisfactory results in the test flow cases including fully developed force driven Poiseuille flows,where the BSBC performs worse at Kn>0.5 with a fixed bridge coefficient of b=0.7.This results in its overprediction of the flow rate in the narrower channel region since the characteristic Knudsen number there is 1.1.The MD simulation suggests that the flow develops gradually through the narrower channel region though all the LBM predictions show almost instant flow development.This fact suggests that the relaxation time model needs to have more sensitivity to the locally defined Kn.Further discussions of the BSBC with a different set of models suggest that the regularization process is required for predicting complex nanoscale flows.展开更多
Ion specificity of Na+ and C1- ions for NaCI solution confined in silicon nanochannels is investigated with molecular dynamics (MD) simulations. The MD simulation results demonstrate that ion specificity for Na+ a...Ion specificity of Na+ and C1- ions for NaCI solution confined in silicon nanochannels is investigated with molecular dynamics (MD) simulations. The MD simulation results demonstrate that ion specificity for Na+ and C1- ions exhibits clearly in na- nochannels with high surface charge density. The two types of ions show different density distributions perpendicular to the channel surface due to the ion specificity when they act as countefions near negatively and positively charged surfaces, respec- tively. Both the two counterion distributions cannot be predicted by Poisson-Boltzmann equation within 0.75 nm near the sur- face. In addition, the ion specificity is also demonstrated through affecting the water density distributions. In the nanochannel with negatively charged surfaces, the presence of the Na+ ions reduces the number of water peaks in water density distribution profile. In comparison, when the C1- ions act as counterions near positively charged surfaces, they do not affect the number of the water peaks. Besides the influence on the water density distribution, ion specificity also exhibits through affecting the wa- ter molecule orientation in the adsorbed layer. It is found that C1- ions make the water molecules in the adsorbed layer align more orderly than Na~ ions do when the two types of ions act as the counterions near the positively and negatively charged surfaces with the same surface charge density.展开更多
Laser fragmentation in liquid is an effective and environment-friendly processing technique capable of yielding colloidal nanoparticles and atomic clusters with a narrow size distribution. The advancement of this tech...Laser fragmentation in liquid is an effective and environment-friendly processing technique capable of yielding colloidal nanoparticles and atomic clusters with a narrow size distribution. The advancement of this technique can be facilitated by an improved understanding of processes that control the sizes, shapes, and structures of the produced nanoparticles. In this work, the dependence of the fragmentation mechanisms on the energy density deposited by the laser pulse is investigated in atomistic simulations performed for 20 nm Au nanoparticles irradiated in water by 10 ps laser pulses. The simulations reveal that the decrease in the absorbed laser energy leads to sequential transitions from the regime of “strong” phase explosion, when all products of an explosive phase decomposition of the irradiated nanoparticle are promptly injected into the water surrounding a nanobubble formed around the nanoparticle, to two distinct regimes of nanoparticle fragmentation leading to the formation of a large central nanoparticle surrounded by smaller satellite fragments. First, in the regime of “mild” phase explosion, the central nanoparticle is produced by the reflection of some of the hot metal droplets generated by the explosive decomposition of the nanoparticle from the boundary of the nanobubble. This reflection is attributed to the inverse Leidenfrost effect acting at the nanoscale. The reflected droplets converge in the center of the nanobubble and coalesce into a single droplet that solidifies shortly after the collapse of the nanobubble. Further decrease in the absorbed laser energy brings the irradiation conditions below the threshold for the phase explosion and results in the formation of a core-satellite structure of the fragmentation products through an interplay of the intense evaporation from the surface of the irradiated nanoparticle, evolution of the nanobubble, and condensation of the metal vapor into clusters and small satellite nanoparticles. The computational predictions are related to the experimental observations, and the connections between the fragmentation mechanisms, the nanoparticle size distribution, and the generation of internal crystal defects are discussed.展开更多
Confinement can induce unusual behaviors of water. Inspired by the fabrication of carbon nanotubes with noncircular cross sections, we performed molecular dynamics simulations to investigate the mobilities of water co...Confinement can induce unusual behaviors of water. Inspired by the fabrication of carbon nanotubes with noncircular cross sections, we performed molecular dynamics simulations to investigate the mobilities of water confined in carbon nanochannels with circular, square, and equilateral triangular cross sections over a variety of dimensions. We find that water exhibits disparate mobilities across different types of channels below 0.796 nm(2). Notably, compared with the other two channels, water in equilateral triangular channels displays the greatest mobilities. Moreover, at 0.425 nm(2), different ordered structures are found in the three channels, and water inside the square channel exhibits an extremely low mobility. It is also found that above 0.796 nm(2), the mobilities along the tube axis of water converge to that of the bulk. These phenomena are understood by analyzing the structure, dynamics, and hydrogen bonding of water. Our work explores the mobilities of water across noncircular carbon nanochannels, which may expand the prospect of noncircular nanochannels in scientific studies and practical applications, such as desalination and drug delivery.展开更多
基金The National Basic Research Program of China(973Program)(No.2011CB707600)the National Natural Science Founda tion of China(No.51435003,51375092)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20160935)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.16KJB460015)
文摘The model of ion transportation through graphene nanochannels is established by the molecular dynamics simulation method. Statistics of the electric potential and charge distribution are made, respectively, on both sides of graphene nanopore with various diameters. Then, their changing relationship with respect to the nanopore diameter is determined. When applying a uniform electric field, polar water molecules are rearranged so that the corresponding relationship between the polarized degree of these molecules and the nanopore diameter can be created. Based on the theoretical model of ion transportation through nanochannels,the changing relationship between the concentration of anions/cations in nanochannels and bulk solution concentration is quantitatively analyzed. The results show that the increase of potential drop and charge accumulation, as well as a more obvious water polarization, will occur with the decrease of nanopore diameter. In addition, hydrogen ion concentration has a large proportion in nanochannels with a sodium chloride(NaCl) solution at a relative low concentration. As the NaCl concentration increases, the concentration appreciation of sodium ions tends to be far greater than the concentration drop of chloride ions. Therefore, sodium ion concentration makes more contribution to ionic conductance.
基金supported in part by National Natural Science Foundation of China (Grant Nos 10474109 and 10674146)supported is part by the Shanghai Supercomputer Center of China
文摘In this paper molecular dynamics simulations are performed to study the accumulation behaviour of N2 and H2 at water/graphite interface under ambient temperature and pressure. It finds that both N2 and H2 molecules can accumulate at the interface and form one of two states according to the ratio of gas molecules number to square of graphite surface from our simulation results: gas films (pancake-like) for a larger ratio and nanobubbles for a smaller ratio. In addition, we discuss the stabilities of nanobubbles at different environment temperatures. Surprisingly, it is found that the density of both kinds of gas states can be greatly increased, even comparable with that of the liquid N2 and liquid H2. The present results are expected to be helpful for the understanding of the stable existence of gas film (pancake-like) and nanobubbles.
基金Partly supported by One-Hundred-Talent Project from the Chinese Academy of Sciences and Shanghai Supercomputer Center of China..
文摘Molecular dynamics simulations have been used to study two topics of water molecules on hydrophobic surfaces. Some properties of the nanobubbles with different ingredients and behavior of single water chains in sin- gle-walled carbon nanochannels are exploited. Molecular simulations show that the density of the N2 and H2 are quite high, which is critical for the stability of the nanobubbles and may have potential applications, such as hydrogen storage, incorporated with recent experimental method to controllably produce hydrogen nanobubbles. The water molecules inside the nanochannel show an unexpected directed motion with long time period, which is indispensable in the future study of the dynamics of biological channels.
基金the National Basic Research Program of China (Grant No. 2006CB300404)the National Natural Science Foundation of China (Grant Nos. 50475077, 50676019, 50506008)+1 种基金the Natural Science Foundation of Jiangsu Province (Grant No. BK2006510)the Foundation of Education Ministry of China (Grant No. 20050286019)
文摘A molecular dynamics (MD) model of the fluidic electrokinetic transport in a nano-scale channel with two bulk sinks was presented, and the process of ion transport in the nanochannel was simulated in this paper. The model consists of two water sinks at the two ends and a pump in the middle, which is different from a single pump model in previous MD simulations. Simulation results show that the charged surfaces of the nanochannel result in the depletion of co-ions and the enrichment of counterions in the nanochannel. A stable current is induced because of the motion of ions when an external electric field is applied across the nanochannel, and the current in the pump region is mainly induced by the motion of counterions. In addition, the ion number in the pump region rapidly decreases as the external electric field is applied. In the equilibrated system, the electrically neutral character in the pump region is destroyed and this region displays a certain electrical character, which depends on the surface charge. The ion distribution is greatly different from the results predicted by the continuum theory, e.g. a smaller peak value of Na+ concentration appears near the wall. The transport efficiency of counterions (co-ions) can be effectively increased (decreased) by increasing the surface charge density. The simulation results demonstrate that the ion distribution in the electric double layer (EDL) of a nanochannel cannot be exactly described by the classical Gouy-Chapman-Stern (GCS) theory model. The mechanism of some special experimental phenomena in a nanochannel and the effect of the surface charge density on the ion-transport efficiency were also explored to provide some theoretical insights for the design and application of nano-scale fluidic pumps.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11072242)
文摘In view of the continued disputes on the fundamental question of whether the surface tension of a vapour bubble in liquid argon increases, or decreases, or remains unchanged with the increase of curvature radius, a cylindrical vapour bubble of argon is studied by molecular dynamics simulation in this paper instead of spherical vapour bubble so as to reduce the statistical error. So far, the surface tension of the cylindrical vapour bubble has not been studied by molecular dynamics simulation in the literature. Our results show that the surface tension decreases with radius increasing. By fitting the Tolman equation with our data, the Tolman length σ = -0.6225 sigma is given under cut-off radius 2.5σ, where σ = 0.3405 nm is the diameter of an argon atom. The Tolman length of Ar being negative is affirmed and the Tolman length of Ar being approximately zero given in the literature is negated, and it is pointed out that this error is attributed to the application of the inapplicable empirical equation of state and the neglect of the difference between surface tension and an equimolar surface.
文摘The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when the nanoparticles reach near each other, the strong interatomic force will make them attach together. This aggrega- tion continues until all nanoparticles make a continuous cluster. The effect of altering the external force magnitude causes changes in the agglomeration rate and system enthalpy. The density and velocity profiles are shown for two systems, i.e., argon (Ar)-copper (Cu) nanofluid and simple Ar fluid between two Cu walls. The results show that using nanopar- ticles changes the base fluid particles ordering along the nanochannel and increases the velocity. Moreover, using nanoparticles in simple fluids can increase the slip length and push the near-wall fluid particles into the main flow in the middle of the nanochannel.
基金The National Basic Research Program of China ( 973Program) ( No. 2006CB300404)the National Natural Science Foundationof China ( No. 50875047, 50676019)the Natural Science Foundation ofJiangsu Province ( No. BK2006510, BK2008201)
文摘A physical model of bulk-nanochannel-bulk with buffer baths is built up using nonequilibrium molecular dynamics (MD) simulation to study the effects of vibrating silicon atoms on the viscosity of aqueous NaCl solutions confined in the nanochannel. The simulation is performed under different moving speeds of the upper wall, different heights and different surface charge densities in the nanochannel. The simulation results indicate that with the increase in the surface charge density and the decrease in the nanochannel height and the shear rate, the vibration effect of silicon atoms on the shear viscosity of the confined fluid in the nanochannel cannot be ignored. Compared with still silicon atoms, the vibrating silicon atoms result in the decrease in the viscosity when the height of the nanochannel is less than 0.8 nm and the shear rate is less than 1.0 ×10^11 s^-1, and the effect of the vibrating silicon atoms on the shear viscosity is significant when the shear rate is small. This is due to the fact that the vibrating silicon atoms weaken the interactions between the counter-ions (Na^+ ) and the charged surface.
基金supported financially by the Core Research for Evolutional Science and Technology(CREST)of Japan Science Technology(JST)Agency(No.228205R)the Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific Research(B)(No.18360050).
文摘The widely used micro-flow wall-boundary conditions for lattice Boltzmann method(LBM)are evaluated in a force driven combined nanochannel flow.The flow field consists of a two-dimensional nanochannel(mother channel)of an infinite length having flat plates of a finite length inside.The flat plate is set above the bottom wall of the nanochannel with a narrow gap.The flow,thus,develops through this narrow gap(narrower channel)and the other side of the plate(wide gap).The Knudsen number based on the mother channel height is Kn=0.14 whereas the characteristic Knudsen number in the narrower channel is 1.1.To obtain the reference data,the molecular dynamics(MD)simulation is performed with a fully diffusive wall condition.The LBMs are based on the lattice BGK model and with the bounce-back/specular reflection(BSBC)and the diffuse scattering(DSBC)wall boundary conditions.The relaxation time is modified to include sensitivity to Kn.The DSBC shows generally satisfactory results in the test flow cases including fully developed force driven Poiseuille flows,where the BSBC performs worse at Kn>0.5 with a fixed bridge coefficient of b=0.7.This results in its overprediction of the flow rate in the narrower channel region since the characteristic Knudsen number there is 1.1.The MD simulation suggests that the flow develops gradually through the narrower channel region though all the LBM predictions show almost instant flow development.This fact suggests that the relaxation time model needs to have more sensitivity to the locally defined Kn.Further discussions of the BSBC with a different set of models suggest that the regularization process is required for predicting complex nanoscale flows.
基金supported by the National Basic Research Program of Chi-na(Grant Nos.2011CB707601,2011CB707605)the National Natural Science Foundation of China(Grant No.50925519)+3 种基金the Research Funding for the Doctor Program from China Educational Ministry(Grant No.20100092110051)the Innovative Project for Graduate Students of Jiangsu Province(Grant No.CXZZ13_0087)the Scientific Research Founda-tion of Graduate School of Southeast University(Grant No.YBJJ1322)The calculations were performed on Tianhe-1A at National Supercomputing Center in Tianjin,China
文摘Ion specificity of Na+ and C1- ions for NaCI solution confined in silicon nanochannels is investigated with molecular dynamics (MD) simulations. The MD simulation results demonstrate that ion specificity for Na+ and C1- ions exhibits clearly in na- nochannels with high surface charge density. The two types of ions show different density distributions perpendicular to the channel surface due to the ion specificity when they act as countefions near negatively and positively charged surfaces, respec- tively. Both the two counterion distributions cannot be predicted by Poisson-Boltzmann equation within 0.75 nm near the sur- face. In addition, the ion specificity is also demonstrated through affecting the water density distributions. In the nanochannel with negatively charged surfaces, the presence of the Na+ ions reduces the number of water peaks in water density distribution profile. In comparison, when the C1- ions act as counterions near positively charged surfaces, they do not affect the number of the water peaks. Besides the influence on the water density distribution, ion specificity also exhibits through affecting the wa- ter molecule orientation in the adsorbed layer. It is found that C1- ions make the water molecules in the adsorbed layer align more orderly than Na~ ions do when the two types of ions act as the counterions near the positively and negatively charged surfaces with the same surface charge density.
基金supported by the National Science Foundation(NSF)(Grant Nos.DMR-1708486,and CMMI-1663429)funded by Deutsche Forschungsgemeinschaft(Grant No.BA 3580/22-1)+1 种基金the Research Award of the Alexander von Humboldt Foundationthe NSF through the Extreme Science and Engineering Discovery Environment(Grant No.TGDMR110090)。
文摘Laser fragmentation in liquid is an effective and environment-friendly processing technique capable of yielding colloidal nanoparticles and atomic clusters with a narrow size distribution. The advancement of this technique can be facilitated by an improved understanding of processes that control the sizes, shapes, and structures of the produced nanoparticles. In this work, the dependence of the fragmentation mechanisms on the energy density deposited by the laser pulse is investigated in atomistic simulations performed for 20 nm Au nanoparticles irradiated in water by 10 ps laser pulses. The simulations reveal that the decrease in the absorbed laser energy leads to sequential transitions from the regime of “strong” phase explosion, when all products of an explosive phase decomposition of the irradiated nanoparticle are promptly injected into the water surrounding a nanobubble formed around the nanoparticle, to two distinct regimes of nanoparticle fragmentation leading to the formation of a large central nanoparticle surrounded by smaller satellite fragments. First, in the regime of “mild” phase explosion, the central nanoparticle is produced by the reflection of some of the hot metal droplets generated by the explosive decomposition of the nanoparticle from the boundary of the nanobubble. This reflection is attributed to the inverse Leidenfrost effect acting at the nanoscale. The reflected droplets converge in the center of the nanobubble and coalesce into a single droplet that solidifies shortly after the collapse of the nanobubble. Further decrease in the absorbed laser energy brings the irradiation conditions below the threshold for the phase explosion and results in the formation of a core-satellite structure of the fragmentation products through an interplay of the intense evaporation from the surface of the irradiated nanoparticle, evolution of the nanobubble, and condensation of the metal vapor into clusters and small satellite nanoparticles. The computational predictions are related to the experimental observations, and the connections between the fragmentation mechanisms, the nanoparticle size distribution, and the generation of internal crystal defects are discussed.
文摘Confinement can induce unusual behaviors of water. Inspired by the fabrication of carbon nanotubes with noncircular cross sections, we performed molecular dynamics simulations to investigate the mobilities of water confined in carbon nanochannels with circular, square, and equilateral triangular cross sections over a variety of dimensions. We find that water exhibits disparate mobilities across different types of channels below 0.796 nm(2). Notably, compared with the other two channels, water in equilateral triangular channels displays the greatest mobilities. Moreover, at 0.425 nm(2), different ordered structures are found in the three channels, and water inside the square channel exhibits an extremely low mobility. It is also found that above 0.796 nm(2), the mobilities along the tube axis of water converge to that of the bulk. These phenomena are understood by analyzing the structure, dynamics, and hydrogen bonding of water. Our work explores the mobilities of water across noncircular carbon nanochannels, which may expand the prospect of noncircular nanochannels in scientific studies and practical applications, such as desalination and drug delivery.