Molecular dynamics (MD) simulations were performed to investigate F+ continuously bombarding SiC surfaces with energies of 100 eV at different incident angles at 300 K. The simulated results show that the steady-st...Molecular dynamics (MD) simulations were performed to investigate F+ continuously bombarding SiC surfaces with energies of 100 eV at different incident angles at 300 K. The simulated results show that the steady-state uptake of F atoms increases with increasing incident angle. With the steady-state etching established, a Si-C-F reactive layer is formed. It is found that the etching yield of Si is greater than that of C. In the F-containing reaction layer, the SiF species is dominant with incident angles less than 30°. For all incident angles, the CF species is dominant over CF2 and CF3.展开更多
基金supported by the Program for Outstanding Young Scientific and Technological Personnel Training of Guizhou Province of China (No. 700968101) and the International Thermonuclear Experimental Reactor (ITER) Special Program of China (No. 2009GB104006)
文摘Molecular dynamics (MD) simulations were performed to investigate F+ continuously bombarding SiC surfaces with energies of 100 eV at different incident angles at 300 K. The simulated results show that the steady-state uptake of F atoms increases with increasing incident angle. With the steady-state etching established, a Si-C-F reactive layer is formed. It is found that the etching yield of Si is greater than that of C. In the F-containing reaction layer, the SiF species is dominant with incident angles less than 30°. For all incident angles, the CF species is dominant over CF2 and CF3.