A series of core-expanded naphthalene diimides(NDI-DTYM) and thiophene-based derivatives(1a-c)were designed and synthesized to investigate the relationship between molecular structures and the highest occupied mol...A series of core-expanded naphthalene diimides(NDI-DTYM) and thiophene-based derivatives(1a-c)were designed and synthesized to investigate the relationship between molecular structures and the highest occupied molecular orbital(HOMO) energy levels but has little impact on the lowest unoccupied molecular orbital(LUMO) energy levels.The results demonstrated that increasing the number of thiophene units can gradually elevate the HOMO energy levels but had little impact on the LUMO energy levels.The n-channel organic field-effect transistors(OFETs) based on 1b and 1c have demonstrated that these almost unchanged LUMO energy levels are proper to transport electrons.展开更多
In scanning tunneling microscopy-induced luminescence(STML),the photon count is measured to reflect single-molecule properties,e.g.,the first molecular excited state.The energy of the first excited state is typically ...In scanning tunneling microscopy-induced luminescence(STML),the photon count is measured to reflect single-molecule properties,e.g.,the first molecular excited state.The energy of the first excited state is typically shown by a rise of the photon count as a function of the bias voltage between the tip and the substrate.It remains a challenge to determine the precise rise position of the current due to possible experimental noise.In this work,we propose an alternating current version of STML to resolve the fine structures in the photon count measurement.The measured photon count and the current at the long-time limit show a sinusoidal oscillation.The zero-frequency component of the current shows knee points at the precise voltage as the fraction of the detuning between the molecular gap and the DC component of the bias voltage.We propose to measure the energy level with discontinuity of the first derivative of such a zero-frequency component.The current method will extend the application of STML in terms of measuring molecular properties.展开更多
基金supported financially by the National Natural Science Foundation of China (Nos. 21302212 and 21522209)the ‘‘Strategic Priority Research Program’’ (No. XDB12010100)
文摘A series of core-expanded naphthalene diimides(NDI-DTYM) and thiophene-based derivatives(1a-c)were designed and synthesized to investigate the relationship between molecular structures and the highest occupied molecular orbital(HOMO) energy levels but has little impact on the lowest unoccupied molecular orbital(LUMO) energy levels.The results demonstrated that increasing the number of thiophene units can gradually elevate the HOMO energy levels but had little impact on the LUMO energy levels.The n-channel organic field-effect transistors(OFETs) based on 1b and 1c have demonstrated that these almost unchanged LUMO energy levels are proper to transport electrons.
基金the National Natural Science Foundation of China(NSFC)(Grant No.11875049)the NSAF(Grant Nos.U1730449 and U1930403)the National Basic Research Program of China(Grant No.2016YFA0301201).
文摘In scanning tunneling microscopy-induced luminescence(STML),the photon count is measured to reflect single-molecule properties,e.g.,the first molecular excited state.The energy of the first excited state is typically shown by a rise of the photon count as a function of the bias voltage between the tip and the substrate.It remains a challenge to determine the precise rise position of the current due to possible experimental noise.In this work,we propose an alternating current version of STML to resolve the fine structures in the photon count measurement.The measured photon count and the current at the long-time limit show a sinusoidal oscillation.The zero-frequency component of the current shows knee points at the precise voltage as the fraction of the detuning between the molecular gap and the DC component of the bias voltage.We propose to measure the energy level with discontinuity of the first derivative of such a zero-frequency component.The current method will extend the application of STML in terms of measuring molecular properties.