Small change in chemical structure of discotic liquid crystals can cause big difference in their mesomorphism. Replacing of the alkoxy peripheral chains of triphenylene by oxygen-atom containing ester chains would res...Small change in chemical structure of discotic liquid crystals can cause big difference in their mesomorphism. Replacing of the alkoxy peripheral chains of triphenylene by oxygen-atom containing ester chains would result in novel mesomorphism. A series of mixed tail triphenylenes containing propoxyacetyloxy and alkoxy, abbreviated as C18H6(OCnH2n+1)3(OCOCH2OC3H7)3, n=4-8, and hexa(propyloxyacetyloxy)triphenylene, C18H6(OCOCH2OC3H7)6 were synthesized. Thermal gravimetry analysis (TGA) of three discogens showed that they had good thermal stability till 350 ℃. The mesomorphism was investigated through differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The preliminary X-ray diffraction (XRD) results of one compound showed that it exhibited ordered hexagonal columnar (Colho) mesophase. These mixed tail triphenylene derivatives possessed much stable Colho mesophase and wider mesophase ranges than their hexaalkoxytriphenylene C18H6(OR)6 and hexaalkanoyloxytriphenylene C18H6(OCOR')6 analogues. The asymmetrical compounds 2,6,11-trialkoxy-3,7,10-tri(2-propyloxyacetyloxy)triphenylenes with n=5-8 displayed higher clearing points and wider temperature ranges than their symmetrical isomers 2,6,10-trialkoxy-3,7,11-tri(2-propyloxyacetyloxy)- triphenylenes, while C18H6(OCOCH2OC3H7)6 had the highest clearing point due to the β-oxygen-atom effect.展开更多
A series of new trialkoxytrialkanoyloxytriphenylene TP(OCnH2n+1)3(OCOCmH2m+1)3 (5a-5e) (n =m+1 =4- 8) discotic liquid crystals were prepared and their mesomorphic properties were investigated using differen...A series of new trialkoxytrialkanoyloxytriphenylene TP(OCnH2n+1)3(OCOCmH2m+1)3 (5a-5e) (n =m+1 =4- 8) discotic liquid crystals were prepared and their mesomorphic properties were investigated using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). The symmetrical and shorter chain triphenylenes display higher melting points and clearing points, more highly ordered and stable columnar mesophase than the asymmetrical and longer chain triphenylenes respectively.展开更多
A basic calculation procedure for the MOSMO method under CNDO/2 approximation is presented in this paper,and performed by using the same parameters as those used in the ordinary CNDO/2 LCAO-MO calculation.The calculat...A basic calculation procedure for the MOSMO method under CNDO/2 approximation is presented in this paper,and performed by using the same parameters as those used in the ordinary CNDO/2 LCAO-MO calculation.The calculated results on the whole are close to those obtained by use of the ordinary CNDO/2 LCAO-MO calculation,illustrating that the presented procedure is reasonable.Due to its simplicity,the presented calculation procedure may be feasible even in very large molecular s ystems.展开更多
Synthetic control of topology connectivity is the crowning achievement for covalent organic framework(COF)fabrications.Although a large number of one-,two-,and three-dimensional(1D,2D,and 3D)COFs have been reported,th...Synthetic control of topology connectivity is the crowning achievement for covalent organic framework(COF)fabrications.Although a large number of one-,two-,and three-dimensional(1D,2D,and 3D)COFs have been reported,their topology structure constructions are restricted to the use of symmetric monomers with the purpose of increasing the crystallinity and/or porosity.Herein,three imine-linked COFs with different topology nets(namely,sql-b and sql-c)were constructed by symmetric variation of monomers via the condensation of a tetra-amine monomer with a D2h-symmetry and lower C_(2v)-symmetric dialdehyde monomers,bearing a phenolic hydroxyl group at different positions.The results indicated that a reasonable introduction of the phenolic hydroxyl group could effectively tune the topological structure of COFs at the molecular level during the crystallization stage.Particularly,the remarkable difference in the dye uptake ability between these COF materials indicated that the fabricated specific pore geometries,as well as different steric hindrance and H-bonding interactions,played a pivotal role in accessing molecules in the solution.Therefore,this work might boost the explorations of COF materials with expected topologies and pore geometries from conventional monomers through bottom-up synthesis methodology by molecular designing and engineering.展开更多
Unraveling the key structural features to maximize the chiroptical properties is of significance for developing high-performance chiral materials.Here we present our first attempt to elucidate and understand the molec...Unraveling the key structural features to maximize the chiroptical properties is of significance for developing high-performance chiral materials.Here we present our first attempt to elucidate and understand the molecular design of excellent chiroptical properties via the combination of multiplicity and the alignment of subhelicenes.Two stereoisomeric PDI-bladed quintuple[6]helicenes,namely D_(5)-CRP and C_(2)-CRP,were revealed to show distinct spatial arrangements of subhelicenes.Circular dichroism(CD)spectra showed that the Cotton effects(Δε)are reaching 1,412 mol-1L cm-1for D_(5)-CRP and 669 mol^(-1)L cm^(-1)for C_(2)-CRP in the visible spectrum.The greatly amplifiedΔεrelative to the smaller analogue NPDH arises from the circular annulation of helicenes and high molecular symmetry that could significantly regulate the transition dipole moments and thereby make them tend to be(anti)parallel,as supported by TDDFT calculations for the rotatory strength(R).Consequently,the maximal dissymmetry factors(|g_(abs)|and|g_(lum)|)of this kind of chiral molecular carbon imides were estimated to be up to 0.021 and 0.012,respectively.This study provides a deep insight into the chiroptical properties of complicated chiral systems.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 50473062, 50673069), the Sichuan Province Youth Foundation (No. 04-ZQ026-044) and the Research Project of Sichuan Province (No. 05GG009-005), China.
文摘Small change in chemical structure of discotic liquid crystals can cause big difference in their mesomorphism. Replacing of the alkoxy peripheral chains of triphenylene by oxygen-atom containing ester chains would result in novel mesomorphism. A series of mixed tail triphenylenes containing propoxyacetyloxy and alkoxy, abbreviated as C18H6(OCnH2n+1)3(OCOCH2OC3H7)3, n=4-8, and hexa(propyloxyacetyloxy)triphenylene, C18H6(OCOCH2OC3H7)6 were synthesized. Thermal gravimetry analysis (TGA) of three discogens showed that they had good thermal stability till 350 ℃. The mesomorphism was investigated through differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The preliminary X-ray diffraction (XRD) results of one compound showed that it exhibited ordered hexagonal columnar (Colho) mesophase. These mixed tail triphenylene derivatives possessed much stable Colho mesophase and wider mesophase ranges than their hexaalkoxytriphenylene C18H6(OR)6 and hexaalkanoyloxytriphenylene C18H6(OCOR')6 analogues. The asymmetrical compounds 2,6,11-trialkoxy-3,7,10-tri(2-propyloxyacetyloxy)triphenylenes with n=5-8 displayed higher clearing points and wider temperature ranges than their symmetrical isomers 2,6,10-trialkoxy-3,7,11-tri(2-propyloxyacetyloxy)- triphenylenes, while C18H6(OCOCH2OC3H7)6 had the highest clearing point due to the β-oxygen-atom effect.
基金Project supported by the National Natural Science Foundation of China (No. 50473062), Youth Foundation of Sichuan Province (No. 04ZQ026-044).
文摘A series of new trialkoxytrialkanoyloxytriphenylene TP(OCnH2n+1)3(OCOCmH2m+1)3 (5a-5e) (n =m+1 =4- 8) discotic liquid crystals were prepared and their mesomorphic properties were investigated using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). The symmetrical and shorter chain triphenylenes display higher melting points and clearing points, more highly ordered and stable columnar mesophase than the asymmetrical and longer chain triphenylenes respectively.
文摘A basic calculation procedure for the MOSMO method under CNDO/2 approximation is presented in this paper,and performed by using the same parameters as those used in the ordinary CNDO/2 LCAO-MO calculation.The calculated results on the whole are close to those obtained by use of the ordinary CNDO/2 LCAO-MO calculation,illustrating that the presented procedure is reasonable.Due to its simplicity,the presented calculation procedure may be feasible even in very large molecular s ystems.
基金supported by the Natural Science Foundation of Fujian Province,China(grant no.2022J01086).
文摘Synthetic control of topology connectivity is the crowning achievement for covalent organic framework(COF)fabrications.Although a large number of one-,two-,and three-dimensional(1D,2D,and 3D)COFs have been reported,their topology structure constructions are restricted to the use of symmetric monomers with the purpose of increasing the crystallinity and/or porosity.Herein,three imine-linked COFs with different topology nets(namely,sql-b and sql-c)were constructed by symmetric variation of monomers via the condensation of a tetra-amine monomer with a D2h-symmetry and lower C_(2v)-symmetric dialdehyde monomers,bearing a phenolic hydroxyl group at different positions.The results indicated that a reasonable introduction of the phenolic hydroxyl group could effectively tune the topological structure of COFs at the molecular level during the crystallization stage.Particularly,the remarkable difference in the dye uptake ability between these COF materials indicated that the fabricated specific pore geometries,as well as different steric hindrance and H-bonding interactions,played a pivotal role in accessing molecules in the solution.Therefore,this work might boost the explorations of COF materials with expected topologies and pore geometries from conventional monomers through bottom-up synthesis methodology by molecular designing and engineering.
基金supported by the National Natural Science Foundation of China(22122503,22235005,and 22275112)the Shandong Provincial Natural Science Foundation(ZR2019ZD50)。
文摘Unraveling the key structural features to maximize the chiroptical properties is of significance for developing high-performance chiral materials.Here we present our first attempt to elucidate and understand the molecular design of excellent chiroptical properties via the combination of multiplicity and the alignment of subhelicenes.Two stereoisomeric PDI-bladed quintuple[6]helicenes,namely D_(5)-CRP and C_(2)-CRP,were revealed to show distinct spatial arrangements of subhelicenes.Circular dichroism(CD)spectra showed that the Cotton effects(Δε)are reaching 1,412 mol-1L cm-1for D_(5)-CRP and 669 mol^(-1)L cm^(-1)for C_(2)-CRP in the visible spectrum.The greatly amplifiedΔεrelative to the smaller analogue NPDH arises from the circular annulation of helicenes and high molecular symmetry that could significantly regulate the transition dipole moments and thereby make them tend to be(anti)parallel,as supported by TDDFT calculations for the rotatory strength(R).Consequently,the maximal dissymmetry factors(|g_(abs)|and|g_(lum)|)of this kind of chiral molecular carbon imides were estimated to be up to 0.021 and 0.012,respectively.This study provides a deep insight into the chiroptical properties of complicated chiral systems.