Aim To study the rules governing pressure distribution of traveling charge under the condition of Lagrange hypothesis. Methods\ The study is based on the laws of conservation of momentum and energy. Results\ The gas ...Aim To study the rules governing pressure distribution of traveling charge under the condition of Lagrange hypothesis. Methods\ The study is based on the laws of conservation of momentum and energy. Results\ The gas flow velocity distribution formula at the back of a projectile and the momentum equation of a traveling charge are deduced, and rules governing their pressure distribution under the Lagrange hypothesis conditions are established. The pressure distribution of a traveling charge is compared with that of a conventional charge. Conclusion\ The pressure distribution in the bore of a traveling charge can be accurately predicted. A parabolic pressure distribution type is revealed.展开更多
An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aero...An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.展开更多
Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positio...Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positions and at different times and three steel bored stress sensors were installed in the return airway to measure rock stress at depth. On the basis of this arrange- ment, the rule of change of the distribution of the side abutment pressure with the advance of the working face and movement of overlying strata was studied. The rule of change and the stability of rock stress at depth were measured. Secondly, the affected area and stability time of the side abutment pressure were also studied. The results show that: 1) During working, the face advanced distance was from 157 m to 99 m, the process was not effected by mining induced pressure. When the distance was 82 m, the posi- tion of peak stress was 5 m away from the coal wall. When the distance was 37 m, the position of peak stress away from the coal wall was about 15 m to 20 m and finally reached a steady state; 2) the time and the range of the peak of side rock pressure obtained from stress sensors were consistent with the results from the dynamic roof monitors; 3) the position of the peak pressure was 25 m away from the coal wall.展开更多
Dynamic disasters,such as rock burst due to the breaking of large area stiff roof strata,are known to occur in the hard rock strata of coal mines.In this paper,mechanical models of the fracturing processes of thick ha...Dynamic disasters,such as rock burst due to the breaking of large area stiff roof strata,are known to occur in the hard rock strata of coal mines.In this paper,mechanical models of the fracturing processes of thick hard rock strata were established based on the thick plate theory and numerical simulations.The results demonstrated that,based on the fracture characteristics of the thick hard rock strata,four fracture models could be analyzed in detail,and the corresponding theoretical failure criteria were determined in detail.In addition,the influence of weak interlayer position on the fracture models and ground pressure of rock strata is deeply analyzed,and six numerical simulation schemes have been implemented.The results showed that the working face pressure caused by the independent movement of the lower layer is relatively low.The different fracture type of the thick hard rock strata had different demands on the working resistance of the hydraulic powered supports.The working resistance of the hydraulic powered supports required by the stratified movements was lower than that of the non-stratified movements.展开更多
Aiming at the fatigue and comfort issues of human-machine contact interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in...Aiming at the fatigue and comfort issues of human-machine contact interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in the formation and development of fatigue is analyzed systematically. The fatigue-causing physiological characteristic indexes are mapped to biomechanical indexes like muscle stress-strain, the compression deformation of blood vessels and nerves etc. from the perspective of formation mechanism. The geometrical model of skeleton and parenchyma is established by applying CT-scanned body data and MRI images. The general rule of comfort body pressure distribution is acquired through the analysis of anatomical structure of buttocks and femoral region. The comprehensive test platform for sitting comfort of 3D adjustable contact interface is constructed. The test of body pressure distribution of human-machine contact interface and its comparison with subjective evaluation indicates that the biomechanical indexes of automobile driving human-machine contact interface and body pressure distribution rule studied can effectively evaluate the fatigue and comfort issues of human-machine contact interface and provide theoretical basis for the optimal design of human-machine contact interface.展开更多
Laboratory experiments have been carried out to study the fluid flow in the wellbore of a horizontal gas well during the production process.The related pressure distribution has been determined considering different c...Laboratory experiments have been carried out to study the fluid flow in the wellbore of a horizontal gas well during the production process.The related pressure distribution has been determined considering different cases(different inflow media,different perforation opening methods and different liquid holdup).It has been found that the larger the fluid flow rate,the greater the pressure changes in the wellbore under the same hole opening mode.The uniformity of the perforation opening method was also an important factor affecting the magnitude of the wellbore pressure change.The liquid holdup also affected the pressure distribution,especially when the gas volumetric flow rate exceeded 200 m3/h.Comparison of the outcomes of the present experimental study with the predictions of a theoretical model available in the literature has provided a relative error smaller than 20%.展开更多
In this paper, the mechanism of the interaction between the breast wall of mound breakwater and waves is expounded, then some new views and the law of variation of horizontal and vertical wave pressure over the breast...In this paper, the mechanism of the interaction between the breast wall of mound breakwater and waves is expounded, then some new views and the law of variation of horizontal and vertical wave pressure over the breast wall are put forward. The results of this study have been adopted in the Specifications of Fishery Harbour Breakwater by the Ministry of Agricultures.展开更多
In this paper, the calculating charts and formulae about wave pressure on the breast wall are derived with seven parameters on the basis of physical model study. The verification shows that the charts agree with the e...In this paper, the calculating charts and formulae about wave pressure on the breast wall are derived with seven parameters on the basis of physical model study. The verification shows that the charts agree with the example, and are adopted in the Specifications of Fishery Harbours Breakwater by the Ministry of Agricultures.展开更多
In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordina...In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordinate was used in the lubricant area and mesh was made. The blockweight approach was implemented to deal with non-coincidence of mesh and shallow recess border in numerical method. The finite control volume method was applied in calculating pressure distribution. The flow conservation equation and film thickness model were resolved through Gauss-Siedel relaxation iteration. The calculation and analysis results indicate that compared to the slipper (1) slip- per pressure distribution is improved; (2) hydrodynamic pressure of the combining slipper is greatly increased; (3) inclining degree is greatly reduced; (4) negative pressure in lubricant film disappear. So the combining center cavity slipper is lubricated better.展开更多
The pressure distributions generated by vaporizing metal foils were studied.An analytical model which described the dynamic mechanical behavior of a rectangular plate under an impulsive loading was introduced.The form...The pressure distributions generated by vaporizing metal foils were studied.An analytical model which described the dynamic mechanical behavior of a rectangular plate under an impulsive loading was introduced.The formed parts of free bulging tests were analyzed using the optical measurement system.Two measurement methods for pressure distributions were introduced and compared.Both the perforated sheet forming test and the pressure film were found to be effective method to measure pressure distributions.The cost of perforated sheet forming test was cheap and the pressure film was easy to operate.Three different pressure distributions were measured and discussed,namely single pressure distribution,tailored pressure distribution and double-direction pressure distribution.These three pressure distributions could be applied in different metal forming processes.展开更多
Flexible pressure monitoring device can help correct the sitting posture and prevent health problems(e.g.,deformity of spinal column and musculoskeletal disease).Currently,most measurement systems hinder their wide ap...Flexible pressure monitoring device can help correct the sitting posture and prevent health problems(e.g.,deformity of spinal column and musculoskeletal disease).Currently,most measurement systems hinder their wide applications owing to the high cost or low accuracy.In this study,a flexible sitting pressure measurement system was proposed based on a textile-based capacitive pressure sensor array in order to measure sitting pressure distribution simply and conveniently.The capacitive pressure sensor array is sandwich structure composed of a high-density sponge layer and two electrode array fabrics,which possesses high resolution(2.26 sensors/cm2),high sensitivity(0.701 kPa-1)and fast response(≤35 ms).It is worth noting that the raw materials of the sensing fabric include commercialized copper sheets and polyester yarns.The as-prepared pressure measurement system can accurately measure the pressure distribution nephogram for sitting posture analysis.The sitting pressure of 10 volunteers was measured and six types of posture were distinguished clearly.展开更多
The expressions of the radius and the surface tension of surface of tension Rs and γs in terms of the pressure distribution for nanoscale liquid threads are of great importance for molecular dynamics (MD) simulatio...The expressions of the radius and the surface tension of surface of tension Rs and γs in terms of the pressure distribution for nanoscale liquid threads are of great importance for molecular dynamics (MD) simulations of the interfacial phenomena of nanoscale fluids; these two basic expressions are derived in this paper. Although these expressions were derived first in the literature[Kim B G, Lee J S, Han M H, and Park S, 2006 Nanoscale and Microscale Thermophysical Engineering, 10, 283] and used widely thereafter, the derivation is wrong both in logical structure and physical thought. In view of the importance of these basic expressions, the logic and physical mistakes appearing in that derivation are pointed out.展开更多
The modified suction caisson(MSC) is a novel type of foundation for ocean engineering, consisting of a short external closed-top cylinder-shaped structure surrounding the upper part of the regular suction caisson(RSC)...The modified suction caisson(MSC) is a novel type of foundation for ocean engineering, consisting of a short external closed-top cylinder-shaped structure surrounding the upper part of the regular suction caisson(RSC). The MSC can provide larger lateral bearing capacity and limit the deflection compared with the RSC. Therefore, the MSC can be much more appropriate to use as an offshore wind turbine foundation. Model tests on the MSC in saturated sand subjected to monotonic lateral loading were carried out to investigate the effects of external structure sizes on the sand surface deformation and the earth pressure distribution along the embedded depth. Test results show that the deformation range of the sand surface increases with the increasing width and length of the external structure. The magnitude of sand upheaval around the MSC is smaller than that of the RSC and the sand upheaval value around the MSC in the loading direction decreases with the increasing external structure dimensions. The net earth pressure in the loading direction acting on the internal compartment of the MSC is smaller than that of the RSC at the same embedded depth. The maximum net earth pressure acting on the external structure outer wall in the loading direction is larger than that of the internal compartment, indicating that a considerable amount of the lateral load and moment is resisted by the external skirt structure.展开更多
At present, numerical modelling of distributions of many rock mass characteristics plays more and more important role in many geomechanical questions. In the issues related to seismic and rockburst hazards, the analys...At present, numerical modelling of distributions of many rock mass characteristics plays more and more important role in many geomechanical questions. In the issues related to seismic and rockburst hazards, the analyses of distributions of stress component values in the rock strata are performed, similarly as those of deformation parameters of the strata. To do this, commercial computer programs are used which function on the basis of the finite element-, separate element-, finite difference-, boundary element methods, or individually designed computer programs. They enable to obtain information, unattainable with other methods, being of importance for further concluding on those hazards. The programs based on applying those methods have contributed to important progress and development of science in the domain of analyzing and predicting the hazards. To this end, the commercial computer programs are used that are based on the methods of: finite elements, separate elements, finite differences, boundary elements, etc., or on individually developed computer programs. They enable to obtain information, unavailable using other methods, being of vital importance for further concluding on these hazards. The programs based on these methods have contributed to essential progress and development of science in the field of analysing and predicting the hazards. Apart from their obvious advantages, they have many drawbacks that hinder their practical, routine application. To allow making these type of analyses, without the necessity of constructing complicated models and knowing the detailed geomechanical parameters of rocks, together with laborious computation using a high-rank computer hardware, an analytical-empirical method has been developed at Central Mining Institute, Poland, to make prediction (modelling) of the distribution of pressure values (vertical component of stress) in SIGMAZ coal seams. It is based on geophysical measurements, generalized for the conditions of the Upper Silesia Coal Basin, of disturbing effect of the mining edge and tectonic faults on the state of stress. The paper presents methodological and programming assumptions of the method. The scope of its application has been discussed, and results of demonstration analyses for Polish hard coal mines presented. There have been also given the advantages of the method in relation to classical numerical methods.展开更多
The humans’ need to use the oceans for exploration and extraction of oil has led to the development of engineering science in the field of offshore structures. Since it’s important to examine the offshore structures...The humans’ need to use the oceans for exploration and extraction of oil has led to the development of engineering science in the field of offshore structures. Since it’s important to examine the offshore structures from different aspects and perspectives, we would have to evaluate many different parameters about them. So categorizing these parameters can help to perform their related analysis with more accuracy and more details. Due to the efficient force it exerts on the structure, the pressure distribution around every marine or hydraulic structure has a significant importance, and it even accounts for one of the dominant issues in designing and building of such structures. In the present study, an oil platform located in Phase 15 of South Pars oil fields, located in the Persian Gulf waters, has been analyzed using the FLOW 3D software. The outputs indicate that the pressure of water is distributed almost hydrostatically with the depth, and its maximum reaches 0.6 MPa at the bottom.展开更多
The current research on gas film is mainly in various precision instruments and machinery while the studies on gas film in ultrasonic motor is few.Based on original N-S equations,the mechanism of gas film action in tr...The current research on gas film is mainly in various precision instruments and machinery while the studies on gas film in ultrasonic motor is few.Based on original N-S equations,the mechanism of gas film action in traveling wave rotary ultrasonic motor(TRUM)is explored through physical explanations and analyzed through numerical simulation.Pressure distributions in the smooth gas film and the gas film considering stator teeth are analyzed.It is concluded that the squeeze number and the non-dimensional amplitude are the main factors that affect the pressure distribution.As the approximate region becomes smaller,the pressure peak of the smooth gas film is close to an atmosphere.The pressure on tooth region is the same as that on smooth model while the region between teeth affects weakly on the whole model.展开更多
The pressure distribution on the grip zones in the CONFORM process has been analysed by means of the slab method, and from the above results the forces applied to the shoe were derived. It is shown that the pressure ...The pressure distribution on the grip zones in the CONFORM process has been analysed by means of the slab method, and from the above results the forces applied to the shoe were derived. It is shown that the pressure along the segment increases powerfully with θ increasing in the primary grip, and increases linearly with θ increasing in the extrusion grip. Thus, it can offer mechanics parameters for the operating techniques and CONFORM machine design.展开更多
A computational approach is presented to handle an enlarged linear rotordynamic model whichsimultaneously includes both radial and misalignment motions.The interactive force and momentbetween the rotating and non-rota...A computational approach is presented to handle an enlarged linear rotordynamic model whichsimultaneously includes both radial and misalignment motions.The interactive force and momentbetween the rotating and non-rotating members are modeled using an adaptation of the classicalReynolds lubrication equation for incompressible laminar isoviscous films.First,the governingequation is derived and the method of solution is introduced based on a 2-dimension,9-point cen-tral difference.Second,force and moment components are computed by numerical integration ofthe film pressure distribution.Finally,the rotordynamic coefficients are yielded according to thegeneralized force gradients.展开更多
Based on incompressible viscous fluid Navier-stokes equation and k-ε 2-equations turbulent model, an investigation on 3D turbulent flow field around four kinds of train models has been made by finite element method. ...Based on incompressible viscous fluid Navier-stokes equation and k-ε 2-equations turbulent model, an investigation on 3D turbulent flow field around four kinds of train models has been made by finite element method. From the calculation, the pressure distribution characters of now field around high-speed trains have been obtained. It is significant for strength design of the high-speed train body, for resisting wind design of the facilities beside the high-speed railways and for determining the aerodynamic force of induced air to the human body near the railways.展开更多
The negative DC corona discharge in air at atmospheric pressure was investigated in a needle-to-water system to obtain the pressure distribution of corona ionic wind.The deformation of water surface was measured and t...The negative DC corona discharge in air at atmospheric pressure was investigated in a needle-to-water system to obtain the pressure distribution of corona ionic wind.The deformation of water surface was measured and the distribution of wind pressure over the water surface was calculated.The effects of varying discharge parameters,such as applied voltage,gap spacing,tip radius of needle,and the shape of grounded electrode,on the wind pressure were studied.The measured wind pressure ranges from several Pa to several tens of Pa and up to 33 Pa over a small area;the pressure is comparatively large in the center and decreases quickly outwards.In the experiment system,a higher voltage on a 3 mm gap resulted in a stronger pressure of the ionic wind;around the onset voltage,using a needle with tip radius of 50μm obtained a larger wind pressure than using a needle with 100μm tip radius,but the latter one can produce larger pressure at higher voltages.Plus,the shape of the grounded electrode only influences the wind pressure a little.展开更多
文摘Aim To study the rules governing pressure distribution of traveling charge under the condition of Lagrange hypothesis. Methods\ The study is based on the laws of conservation of momentum and energy. Results\ The gas flow velocity distribution formula at the back of a projectile and the momentum equation of a traveling charge are deduced, and rules governing their pressure distribution under the Lagrange hypothesis conditions are established. The pressure distribution of a traveling charge is compared with that of a conventional charge. Conclusion\ The pressure distribution in the bore of a traveling charge can be accurately predicted. A parabolic pressure distribution type is revealed.
基金The National Natural Science Foundation of China(No50475073,50775036)the High Technology Research Program of Jiangsu Province(NoBG2006035)
文摘An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast.
基金Projects 106084 supported by the Scientific and Technological Research of the Ministry of EducationBK2007701 by the Natural Science Foundation ofJiangsu Province 2006CB2022010 by the National Basic Research Program of China and the Qing-lan Project of Jiangsu Province
文摘Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positions and at different times and three steel bored stress sensors were installed in the return airway to measure rock stress at depth. On the basis of this arrange- ment, the rule of change of the distribution of the side abutment pressure with the advance of the working face and movement of overlying strata was studied. The rule of change and the stability of rock stress at depth were measured. Secondly, the affected area and stability time of the side abutment pressure were also studied. The results show that: 1) During working, the face advanced distance was from 157 m to 99 m, the process was not effected by mining induced pressure. When the distance was 82 m, the posi- tion of peak stress was 5 m away from the coal wall. When the distance was 37 m, the position of peak stress away from the coal wall was about 15 m to 20 m and finally reached a steady state; 2) the time and the range of the peak of side rock pressure obtained from stress sensors were consistent with the results from the dynamic roof monitors; 3) the position of the peak pressure was 25 m away from the coal wall.
基金the Beijing Outstanding Young Scientist Program of China(No.BJJWZYJH01201911413037)projects(Nos.41877257 and 51622404)supported by National Natural Science Foundation of China+1 种基金Shaanxi Coal Group Key Project of China(No.2018SMHKJ-A-J-03)the Fundamental Research Funds for the Central Universities of China(No.2021YJSLJ23)。
文摘Dynamic disasters,such as rock burst due to the breaking of large area stiff roof strata,are known to occur in the hard rock strata of coal mines.In this paper,mechanical models of the fracturing processes of thick hard rock strata were established based on the thick plate theory and numerical simulations.The results demonstrated that,based on the fracture characteristics of the thick hard rock strata,four fracture models could be analyzed in detail,and the corresponding theoretical failure criteria were determined in detail.In addition,the influence of weak interlayer position on the fracture models and ground pressure of rock strata is deeply analyzed,and six numerical simulation schemes have been implemented.The results showed that the working face pressure caused by the independent movement of the lower layer is relatively low.The different fracture type of the thick hard rock strata had different demands on the working resistance of the hydraulic powered supports.The working resistance of the hydraulic powered supports required by the stratified movements was lower than that of the non-stratified movements.
基金Selected from Proceedings of the 7th International Conference on Frontiers of Design and Manufacturing(ICFDM'2006)This project is supported by National Natural Science Foundation of China(No.50475090) Program for New Century Excellent Talents in University,China(040927).
文摘Aiming at the fatigue and comfort issues of human-machine contact interface in automobile driving and based on physiological and anatomical principle, the physiological and biochemical process of muscles and nerves in the formation and development of fatigue is analyzed systematically. The fatigue-causing physiological characteristic indexes are mapped to biomechanical indexes like muscle stress-strain, the compression deformation of blood vessels and nerves etc. from the perspective of formation mechanism. The geometrical model of skeleton and parenchyma is established by applying CT-scanned body data and MRI images. The general rule of comfort body pressure distribution is acquired through the analysis of anatomical structure of buttocks and femoral region. The comprehensive test platform for sitting comfort of 3D adjustable contact interface is constructed. The test of body pressure distribution of human-machine contact interface and its comparison with subjective evaluation indicates that the biomechanical indexes of automobile driving human-machine contact interface and body pressure distribution rule studied can effectively evaluate the fatigue and comfort issues of human-machine contact interface and provide theoretical basis for the optimal design of human-machine contact interface.
基金supported by the National Major Scientific and Technological Special Project(2016ZX05056004-002)Foundation of the Educational Commission of Hubei Province of China(No.Q20191310)National Natural Science Foundation of China(Grant No.61572084).
文摘Laboratory experiments have been carried out to study the fluid flow in the wellbore of a horizontal gas well during the production process.The related pressure distribution has been determined considering different cases(different inflow media,different perforation opening methods and different liquid holdup).It has been found that the larger the fluid flow rate,the greater the pressure changes in the wellbore under the same hole opening mode.The uniformity of the perforation opening method was also an important factor affecting the magnitude of the wellbore pressure change.The liquid holdup also affected the pressure distribution,especially when the gas volumetric flow rate exceeded 200 m3/h.Comparison of the outcomes of the present experimental study with the predictions of a theoretical model available in the literature has provided a relative error smaller than 20%.
文摘In this paper, the mechanism of the interaction between the breast wall of mound breakwater and waves is expounded, then some new views and the law of variation of horizontal and vertical wave pressure over the breast wall are put forward. The results of this study have been adopted in the Specifications of Fishery Harbour Breakwater by the Ministry of Agricultures.
文摘In this paper, the calculating charts and formulae about wave pressure on the breast wall are derived with seven parameters on the basis of physical model study. The verification shows that the charts agree with the example, and are adopted in the Specifications of Fishery Harbours Breakwater by the Ministry of Agricultures.
基金Supported by the National Key Laboratory Foundation Project(9140C3403010903)
文摘In order to improve lubricating characteristics of slippers in an axial piston pump, the combining center cavity slipper approach was proposed based on slipper shape and moving characteristic. The cylindrical coordinate was used in the lubricant area and mesh was made. The blockweight approach was implemented to deal with non-coincidence of mesh and shallow recess border in numerical method. The finite control volume method was applied in calculating pressure distribution. The flow conservation equation and film thickness model were resolved through Gauss-Siedel relaxation iteration. The calculation and analysis results indicate that compared to the slipper (1) slip- per pressure distribution is improved; (2) hydrodynamic pressure of the combining slipper is greatly increased; (3) inclining degree is greatly reduced; (4) negative pressure in lubricant film disappear. So the combining center cavity slipper is lubricated better.
基金The German Academic Exchange Service(DAAD)provides financial support for this paper
文摘The pressure distributions generated by vaporizing metal foils were studied.An analytical model which described the dynamic mechanical behavior of a rectangular plate under an impulsive loading was introduced.The formed parts of free bulging tests were analyzed using the optical measurement system.Two measurement methods for pressure distributions were introduced and compared.Both the perforated sheet forming test and the pressure film were found to be effective method to measure pressure distributions.The cost of perforated sheet forming test was cheap and the pressure film was easy to operate.Three different pressure distributions were measured and discussed,namely single pressure distribution,tailored pressure distribution and double-direction pressure distribution.These three pressure distributions could be applied in different metal forming processes.
基金Fundamental Research Fund for the Central Universities,China(Nos.2232020G-01 and 19D110106)Young Elite Scientists Sponsorship Program by China Association for Science and Technology,China(No.2017QNRC001)Graduate Student Innovation Fund of Donghua University,China(No.20D310111)。
文摘Flexible pressure monitoring device can help correct the sitting posture and prevent health problems(e.g.,deformity of spinal column and musculoskeletal disease).Currently,most measurement systems hinder their wide applications owing to the high cost or low accuracy.In this study,a flexible sitting pressure measurement system was proposed based on a textile-based capacitive pressure sensor array in order to measure sitting pressure distribution simply and conveniently.The capacitive pressure sensor array is sandwich structure composed of a high-density sponge layer and two electrode array fabrics,which possesses high resolution(2.26 sensors/cm2),high sensitivity(0.701 kPa-1)and fast response(≤35 ms).It is worth noting that the raw materials of the sensing fabric include commercialized copper sheets and polyester yarns.The as-prepared pressure measurement system can accurately measure the pressure distribution nephogram for sitting posture analysis.The sitting pressure of 10 volunteers was measured and six types of posture were distinguished clearly.
基金RαProject supported by the National Natural Science Foundation of China(Grant No.11072242)the Research and Development Program of Science and Technology of Higher Education of Shanxi Province,China(Grant No.20121029)
文摘The expressions of the radius and the surface tension of surface of tension Rs and γs in terms of the pressure distribution for nanoscale liquid threads are of great importance for molecular dynamics (MD) simulations of the interfacial phenomena of nanoscale fluids; these two basic expressions are derived in this paper. Although these expressions were derived first in the literature[Kim B G, Lee J S, Han M H, and Park S, 2006 Nanoscale and Microscale Thermophysical Engineering, 10, 283] and used widely thereafter, the derivation is wrong both in logical structure and physical thought. In view of the importance of these basic expressions, the logic and physical mistakes appearing in that derivation are pointed out.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51639002 and 51379118)the SDUST Research Fund(Grant No.2015KYTD104)
文摘The modified suction caisson(MSC) is a novel type of foundation for ocean engineering, consisting of a short external closed-top cylinder-shaped structure surrounding the upper part of the regular suction caisson(RSC). The MSC can provide larger lateral bearing capacity and limit the deflection compared with the RSC. Therefore, the MSC can be much more appropriate to use as an offshore wind turbine foundation. Model tests on the MSC in saturated sand subjected to monotonic lateral loading were carried out to investigate the effects of external structure sizes on the sand surface deformation and the earth pressure distribution along the embedded depth. Test results show that the deformation range of the sand surface increases with the increasing width and length of the external structure. The magnitude of sand upheaval around the MSC is smaller than that of the RSC and the sand upheaval value around the MSC in the loading direction decreases with the increasing external structure dimensions. The net earth pressure in the loading direction acting on the internal compartment of the MSC is smaller than that of the RSC at the same embedded depth. The maximum net earth pressure acting on the external structure outer wall in the loading direction is larger than that of the internal compartment, indicating that a considerable amount of the lateral load and moment is resisted by the external skirt structure.
基金Project R0903003 supported by the Research-Development Project of Poland
文摘At present, numerical modelling of distributions of many rock mass characteristics plays more and more important role in many geomechanical questions. In the issues related to seismic and rockburst hazards, the analyses of distributions of stress component values in the rock strata are performed, similarly as those of deformation parameters of the strata. To do this, commercial computer programs are used which function on the basis of the finite element-, separate element-, finite difference-, boundary element methods, or individually designed computer programs. They enable to obtain information, unattainable with other methods, being of importance for further concluding on those hazards. The programs based on applying those methods have contributed to important progress and development of science in the domain of analyzing and predicting the hazards. To this end, the commercial computer programs are used that are based on the methods of: finite elements, separate elements, finite differences, boundary elements, etc., or on individually developed computer programs. They enable to obtain information, unavailable using other methods, being of vital importance for further concluding on these hazards. The programs based on these methods have contributed to essential progress and development of science in the field of analysing and predicting the hazards. Apart from their obvious advantages, they have many drawbacks that hinder their practical, routine application. To allow making these type of analyses, without the necessity of constructing complicated models and knowing the detailed geomechanical parameters of rocks, together with laborious computation using a high-rank computer hardware, an analytical-empirical method has been developed at Central Mining Institute, Poland, to make prediction (modelling) of the distribution of pressure values (vertical component of stress) in SIGMAZ coal seams. It is based on geophysical measurements, generalized for the conditions of the Upper Silesia Coal Basin, of disturbing effect of the mining edge and tectonic faults on the state of stress. The paper presents methodological and programming assumptions of the method. The scope of its application has been discussed, and results of demonstration analyses for Polish hard coal mines presented. There have been also given the advantages of the method in relation to classical numerical methods.
文摘The humans’ need to use the oceans for exploration and extraction of oil has led to the development of engineering science in the field of offshore structures. Since it’s important to examine the offshore structures from different aspects and perspectives, we would have to evaluate many different parameters about them. So categorizing these parameters can help to perform their related analysis with more accuracy and more details. Due to the efficient force it exerts on the structure, the pressure distribution around every marine or hydraulic structure has a significant importance, and it even accounts for one of the dominant issues in designing and building of such structures. In the present study, an oil platform located in Phase 15 of South Pars oil fields, located in the Persian Gulf waters, has been analyzed using the FLOW 3D software. The outputs indicate that the pressure of water is distributed almost hydrostatically with the depth, and its maximum reaches 0.6 MPa at the bottom.
基金supported in part by the National Basic Research Program of China(No.2015CB057501)
文摘The current research on gas film is mainly in various precision instruments and machinery while the studies on gas film in ultrasonic motor is few.Based on original N-S equations,the mechanism of gas film action in traveling wave rotary ultrasonic motor(TRUM)is explored through physical explanations and analyzed through numerical simulation.Pressure distributions in the smooth gas film and the gas film considering stator teeth are analyzed.It is concluded that the squeeze number and the non-dimensional amplitude are the main factors that affect the pressure distribution.As the approximate region becomes smaller,the pressure peak of the smooth gas film is close to an atmosphere.The pressure on tooth region is the same as that on smooth model while the region between teeth affects weakly on the whole model.
文摘The pressure distribution on the grip zones in the CONFORM process has been analysed by means of the slab method, and from the above results the forces applied to the shoe were derived. It is shown that the pressure along the segment increases powerfully with θ increasing in the primary grip, and increases linearly with θ increasing in the extrusion grip. Thus, it can offer mechanics parameters for the operating techniques and CONFORM machine design.
文摘A computational approach is presented to handle an enlarged linear rotordynamic model whichsimultaneously includes both radial and misalignment motions.The interactive force and momentbetween the rotating and non-rotating members are modeled using an adaptation of the classicalReynolds lubrication equation for incompressible laminar isoviscous films.First,the governingequation is derived and the method of solution is introduced based on a 2-dimension,9-point cen-tral difference.Second,force and moment components are computed by numerical integration ofthe film pressure distribution.Finally,the rotordynamic coefficients are yielded according to thegeneralized force gradients.
文摘Based on incompressible viscous fluid Navier-stokes equation and k-ε 2-equations turbulent model, an investigation on 3D turbulent flow field around four kinds of train models has been made by finite element method. From the calculation, the pressure distribution characters of now field around high-speed trains have been obtained. It is significant for strength design of the high-speed train body, for resisting wind design of the facilities beside the high-speed railways and for determining the aerodynamic force of induced air to the human body near the railways.
基金Project supported by National Key Laboratory of Science and Technology on Electro-mechanical Dynamic Control of China(2011C3606)
文摘The negative DC corona discharge in air at atmospheric pressure was investigated in a needle-to-water system to obtain the pressure distribution of corona ionic wind.The deformation of water surface was measured and the distribution of wind pressure over the water surface was calculated.The effects of varying discharge parameters,such as applied voltage,gap spacing,tip radius of needle,and the shape of grounded electrode,on the wind pressure were studied.The measured wind pressure ranges from several Pa to several tens of Pa and up to 33 Pa over a small area;the pressure is comparatively large in the center and decreases quickly outwards.In the experiment system,a higher voltage on a 3 mm gap resulted in a stronger pressure of the ionic wind;around the onset voltage,using a needle with tip radius of 50μm obtained a larger wind pressure than using a needle with 100μm tip radius,but the latter one can produce larger pressure at higher voltages.Plus,the shape of the grounded electrode only influences the wind pressure a little.