给出了顾及电离层二阶项和三阶项延迟改正的非差精密单点定位(precise point positioning,PPP)模型。利用全球均匀分布的38个IGS跟踪站,对比分析了不同纬度、不同电离层环境下电离层高阶项延迟对GNSS观测值以及静态PPP解算的影响。实验...给出了顾及电离层二阶项和三阶项延迟改正的非差精密单点定位(precise point positioning,PPP)模型。利用全球均匀分布的38个IGS跟踪站,对比分析了不同纬度、不同电离层环境下电离层高阶项延迟对GNSS观测值以及静态PPP解算的影响。实验结果表明,电离层高阶项延迟对低纬度地区的静态PPP的定位结果影响最为显著,可达3~5mm;而对高、中纬度的影响则较小,分别为亚mm和mm级水平;且其影响主要体现在南北(N)方向,呈向南偏移的趋势,尤其是在低纬度地区,该分量可达3mm以上,是E方向和U方向的2~3倍。此外,电离层活跃程度对定位结果也有一定影响,其活跃期影响值相对于平静期影响值高20%~30%。展开更多
The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and ...The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases.展开更多
文摘给出了顾及电离层二阶项和三阶项延迟改正的非差精密单点定位(precise point positioning,PPP)模型。利用全球均匀分布的38个IGS跟踪站,对比分析了不同纬度、不同电离层环境下电离层高阶项延迟对GNSS观测值以及静态PPP解算的影响。实验结果表明,电离层高阶项延迟对低纬度地区的静态PPP的定位结果影响最为显著,可达3~5mm;而对高、中纬度的影响则较小,分别为亚mm和mm级水平;且其影响主要体现在南北(N)方向,呈向南偏移的趋势,尤其是在低纬度地区,该分量可达3mm以上,是E方向和U方向的2~3倍。此外,电离层活跃程度对定位结果也有一定影响,其活跃期影响值相对于平静期影响值高20%~30%。
文摘The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases.