In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through...In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through open channels. The transient and steady-state flow of a molten slag in a rectangular open channel is numerically analyzed here. For the transient flow, the Saint-Venant equations were numerically solved. For the steady-state flow, the derivatives in time and space in the Saint-Venant equations were set equal to zero and a polynomial of degree 3 is obtained whose roots are the slag height values. It was assumed that the viscosity of the slag has an Arrhenius-type behavior with temperature. Four values of temperature values, namely 1723.15, 1773.15, 1823.15, 18873.15 ˚K, and five values of the angle of inclination of the channel, namely 1, 2, 3, 4, 5 degrees, are considered. Numerical results show that the steady-state values of the height and velocity of the molten slag depend strongly on the temperature of the slag and the angle of inclination of the channel. As the slag temperature and channel angle increase, the value of the steady-state slag height decreases. The value of the steady-state slag velocity increases as the slag temperature and channel inclination angle increase.展开更多
Experimental studies on the rheological properties of a Ca O–Si O2–Al2O3–Mg O–Ti O2–(Ti C) blast furnace(BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of h...Experimental studies on the rheological properties of a Ca O–Si O2–Al2O3–Mg O–Ti O2–(Ti C) blast furnace(BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different Ti C contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing Ti C content, the viscosity of the molten slag tended to increase. If the Ti C content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the Ti C content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the Ti C content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.展开更多
An approach was made to correlate the proposed model of ion-cluster structure and structural parameter of TiO_2-bearing pentan system of molten slag with properties.Re- sults showed that an increase of ions with 4-coo...An approach was made to correlate the proposed model of ion-cluster structure and structural parameter of TiO_2-bearing pentan system of molten slag with properties.Re- sults showed that an increase of ions with 4-coordination number in molten slag makes the increase of bulk viscosity and the decrease of density,while ions with 6-coordination number are the contrary.The structural parameter proposed is so fairly interrelated to the properties of slag,that it may be available for the prediction about properties.In comparison with ions of 4-coordination number.Ti is more effective than Al and Si.展开更多
High alumina slag will cause severe corrosion at the interface of alumina refractory,and the wetting behavior of slag is a key factor influencing the corrosion resistance of refractory ceramics.The static magnetic fie...High alumina slag will cause severe corrosion at the interface of alumina refractory,and the wetting behavior of slag is a key factor influencing the corrosion resistance of refractory ceramics.The static magnetic field is a promising solution for improvement in the slag resistance of refractory.The wetting of alumina refractory ceramics with different basicities of high alumina slags under a weak static magnetic field was analyzed,given that a weak static magnetic field can affect the corrosion behavior of refractory ceramics.Taking slag S_(3) as an example,when there was an external static magnetic field of 1.0 mT at 1600 ℃,the thickness of calcium aluminate reaction layer at the interface decreased by 36.7%,the denting depth of interface decreased by 35.6%,and the apparent wetting angle increased by 20%.The living radicals and their formation path in oxide melts were verified by first-principles calculation combined with electron paramagnetic resonance spectroscopy analysis.The influence of the flux density of a weak static magnetic field on the wetting behavior of slags was also explored.The contact angle of the slags increased owing to the inhibitory effect of magnetic field on the radicalinvolved reaction at the interface of the slag and the alumina refractory ceramic.The relationships between the magnetic flux density,diffusion coefficient,slag microstructure(hyperfine coupling constant),and contact angle were established.This provides a theoretical basis for the field control of radical involved reactive wetting between inorganic oxide slags and solid oxide ceramics.展开更多
Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular ...Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular open channel is numerically studied by solving the Saint-Venant equations by means of an explicit backwards finite difference scheme. An Arrhenius-type dependence of the viscosity of the slag on temperature is assumed. To calculate that viscosity, four temperatures are considered, namely 1450˚C, 1500˚C, 1550˚C and 1600˚C. To study the dynamic response of the system, a half-sinusoidal pulse with duration of 5 s is imposed at the channel entrance. According to the numerical simulations, for all the temperatures considered, the slag flow in the channel for an angle of 5 degrees is supercritical in nature. However, for an angle of 1 degree, the flow is transcritical, that is, it presents a transition from subcritical to supercritical.展开更多
A novel process of vanadium extraction from vanadium slag in its molten state was conducted at the laboratory scale by oxidation with pure oxygen in the presence of CaO. The effect of mass ratio of CaO to V2O5 on the ...A novel process of vanadium extraction from vanadium slag in its molten state was conducted at the laboratory scale by oxidation with pure oxygen in the presence of CaO. The effect of mass ratio of CaO to V2O5 on the recovery of vanadium was studied. The sintered samples were leached by H2SO4 solution and characterized by XRD, XPS, SEM and EDS techniques. Compared with the roasting process, the energy saving effect of the proposed process was also discussed. The results showed that vanadium-rich phases were formed and vanadium mainly existed in the forms of CaV2O5 and Ca2V2O7. The formation mechanism of calcium vanadates in the molten vanadium bearing slag was explained. The XRD and XPS results implied that there was a limit to the oxidation reaction of V(IV) to V(V) under the high temperatures even though oxygen-supply was sufficient. An increase in the CaO content led to an increase in the formation of Ca2V2O7. About 90%of the vanadium recovery was obtained under optimal experiment conditions (mass ratio of CaO to V2O5 of 0.6, particle size 120 to 150μm, leaching temperature 90 °C, leaching time 2 h, H2SO4 concentration 20%, liquid to solid ratio 5:1 mL/g, stirring speed 500 r/min). The energy of 1.85×106 kJ could be saved in every 1000 kg of vanadium bearing slag using the proposed process from the theoretical calculation results. Recovery of vanadium from the molten vanadium bearing slag and utilisation of its heat energy are important not only for saving metal resources, but also for energy saving and emission reduction.展开更多
A physical model of molten slag granulation by rotary disk was developed based on the mechanism of New-tonian liquid granulation. For geometrical similarity, the radius ratio of model disk to the prototype disk was ch...A physical model of molten slag granulation by rotary disk was developed based on the mechanism of New-tonian liquid granulation. For geometrical similarity, the radius ratio of model disk to the prototype disk was chosen as 1 : 1. For dynamic similarity, equality of Ohnesorge number between the model and the prototype was achieved firstly by compounding rosin and paraffin wax with mass ratio of 4 ~ 1 as simulation liquid of molten blast furnace (BF) slag, and the simulation material can satisfy the similarity of liquid solid transformation during falling in the medium; then equality of Reynolds number and Weber number was obtained by controlling the volumetric flow rate and the rotary speed, respectively. Model accuracy was verified by comparing the simulation data with the results re ported in literature, which showed good agreement with the calculation results of empirical equation and the actual molten BF slag granulation from the view point of particle size. Furthermore, influences of disk radius, rotary speed and liquid flow rate on granulation were discussed using the developed model, and the Kitamura equation was modi-fied according to the simulation data which can predict particle size more accurately. Using the modified equation, the operation parameters were predicted according to the flow rate of molten industrial BF slag.展开更多
Nanostructured TiO2 with different morphologies and crystal phases was successfully synthesized from titanium-containing electric furnace molten slag by using a hydrothermal method followed by reflux process in acid s...Nanostructured TiO2 with different morphologies and crystal phases was successfully synthesized from titanium-containing electric furnace molten slag by using a hydrothermal method followed by reflux process in acid solution. The effects of acid concentration, reflux time, and acid type on the formation of TiO2 were systematically investigated by scanning electron microscopy, X-ray dif- fraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and X-ray fluorescence (XRF). It is indicated that TiO2 nanorod with rutile phase is achieved in nitric or hydrochloric acid, while anatase TiO2 nanodisk is formed in sulfuric acid. With the increase of the concentration of hydrochloric acid from 0.3 to 1.5 mol-L-1, the dispersibility and crystallinity of the final product can be improved. With prolonging the reflux time from 6 to 14 h, the rutile TiO2 nanorod with uniform crystal size and high crystallinity is obtained. The growth mechanism of TiO2 nanorod and nanodisk prepared under different conditions was also discussed.展开更多
The oxygen-ion-permeable membrane galvanic short-circuit method has been developed, in which pure metal was directly extracted from the molten oxide slag, and no external voltage is applied. The galvanic cell employed...The oxygen-ion-permeable membrane galvanic short-circuit method has been developed, in which pure metal was directly extracted from the molten oxide slag, and no external voltage is applied. The galvanic cell employed in the experiment was as follows: graphite rod|[O]Fe+C saturation|ZrO2(MgO)|(FeO)(slag)|Fe rod. The reduction current in the galvanic cell consisted of an external short-circuit current and an interior short-circuit current in the oxygen-ion-permeable membrane. The real-time variation of external circuit reduction ratio of the molten slag could be obtained from the curve of the external circuit current to the time.展开更多
The oxygen-ion-permeable membrane galvanic short-circuit method has been developed, in which pure metal was directly extracted from the molten oxide slag, and no external voltage is applied. The galvanic cell employed...The oxygen-ion-permeable membrane galvanic short-circuit method has been developed, in which pure metal was directly extracted from the molten oxide slag, and no external voltage is applied. The galvanic cell employed in the experiment was as follows: graphite rod|[O]_(Fe+C saturation)[ZrO_2(MgO)|(FeO)_(slag))|Fe rod. The reduction current in the galvanic cell consisted of an external short-circuit current and an interior short-circuit current in the oxygen-ion-permeable membrane. The real-time variation of external circuit reduction ratio of the molten slag could be obtained from the curve of the external circuit current to the time.展开更多
The molten slag in smelting reduction with iron bath has peculiar behaviour for its high FeO concentration. Slag foaming is effected by the concentration and reduction rate of FeO, basicity of slag and temperature. Ad...The molten slag in smelting reduction with iron bath has peculiar behaviour for its high FeO concentration. Slag foaming is effected by the concentration and reduction rate of FeO, basicity of slag and temperature. Addition of granulated coke can greatly decrease slag foaming extent in the process of smelting reduction with iron bath. The anti-foaming capacity of granulated coke is the best when the ratio of coke used for coke layer to total coke used in smelting reduction is controlled at about 20%.展开更多
TiO_2 visible light catalysts with different crystalline phases and morphologies were synthesized from titanium-bearing electric arc furnace molten slag(Ti-bearing EAF slag)by using a simple acidolysis process.The e...TiO_2 visible light catalysts with different crystalline phases and morphologies were synthesized from titanium-bearing electric arc furnace molten slag(Ti-bearing EAF slag)by using a simple acidolysis process.The effects of the p H of the HCl solution,liquid to solid ratio(RL/S,HCl solution to the residue ratio,m L/g) and acidolysis time on the micro-morphology and crystalline phase of as-prepared TiO_2 photocatalysts were systematically investigated.The results indicated that with decreasing p H in the HCl solution and increasing RL/S,the crystalline phase and micro-morphology of the obtained TiO_2 nanostructures tended to transform from anatase type TiO_2 with spherical nanoparticle structures to rutile type TiO_2 with needle-like nanorod structures.The acidolysis time had little influence on the crystalline phase but great impact on the size of the obtained TiO_2.The growth mechanism of TiO_2 from Ti-bearing EAF slag during the acidolysis process was also discussed.In addition,the influence of RL/Son the photocatalytic properties of the synthesized nanostructured TiO_2 was studied.The results showed that the photodegradation efficiency for Rhodamine B solution could reach 91.00% in 120 min when the RL/Swas controlled at 50:1.展开更多
Activity of TiO_2 in the molten blast furnace slag containing TiO_2 has been examined at 1500℃ by means of “molten slag-Sn” chemical equilibrium method,using metallic Sn as flux and graphite as deoxidizer,together ...Activity of TiO_2 in the molten blast furnace slag containing TiO_2 has been examined at 1500℃ by means of “molten slag-Sn” chemical equilibrium method,using metallic Sn as flux and graphite as deoxidizer,together with phase diagram caIculation.In the pentary slag system CaO-MgO-SiO_2-TiO_2-Al_2O_3,a_(TiO_2)=0.01—0.05 or 0.02—0.10 with pure liquid or solid TiO_2 as standard state,respectively.The activity and activity coefficient of TiO_2 in relation to concentration of TiO_2 have been discussed.展开更多
Modified quasi-regular solution model has been available based on the sub-regular solution model and quasiregular solution model in this article. The three parameters of this model are set by the computer-aided analys...Modified quasi-regular solution model has been available based on the sub-regular solution model and quasiregular solution model in this article. The three parameters of this model are set by the computer-aided analysis based on the experimental data of activity at two different temperatures. Seven binary molten slag systems in the whole concentration are calculated by application of the model and the average relative error is within 10%. Ten binary molten slag systems presenting saturation concentration are also calculated, but the average relative error is bigger, especially for the systems containing acidic oxide and neutral oxide. The results show that the calculated results are superior to those calculated by application of regular solution model, sub-regular solution model and quasi-regular solution model.展开更多
A novel route to comprehensive utilization of valuable elements such as Ti, A1, Si and Mg in Ti-bearing electric arc furnace molten slag (Ti-bearing EAF slag) was proposed. The route can be expressed as a three-step...A novel route to comprehensive utilization of valuable elements such as Ti, A1, Si and Mg in Ti-bearing electric arc furnace molten slag (Ti-bearing EAF slag) was proposed. The route can be expressed as a three-step process including alkali fusion, water leaching and acidolysis. Following these processes under the optimum conditions, the recovery ratios of TiO2, Al2O3, SiO2 and MgO were about 97.5, 93.5, 27.9 and 53.5%, respectively. Meanwhile, nanostructured TiO2, NaA zeolite and Mg(OH)2 fire retardant were synthesized simultaneously by using Ti-bearing EAF slag as raw materials. In addition, the photocatalytic activity of prepared nanostructured TiO2 and the adsorption property of obtained NaA zeolite were investigated. The results showed that the photodegradation efficiency of as-prepared TiO2 was 80% for rhodamine B and the adsorption efficiency of NaA zeolite was 61% for Cu2+ under the optimum conditions.展开更多
The entrained flow gasification has been identified as the most promising gasification technology.Serious environmental pollution and waste of land resources are caused by the increasing amount of storage and producti...The entrained flow gasification has been identified as the most promising gasification technology.Serious environmental pollution and waste of land resources are caused by the increasing amount of storage and production of coal gasification slag.The aim of this work is to explore the feasibility of high-temperature combustion and melting technology for treating coal gasification fine slag and determine the important parameters of system operation.The flow properties and molten slag structure characteristics of three fine slags from different entrained flow gasifiers were studied.Depending on the melting mechanism of melt-dissolution,the melting time of fine slags is short.Three fine slags all produce glassy slags,which is conducive to slag discharge.The degree of polymerization of silicate melt is proportionate to the amount of SiO_(2)in the slag.A part of Al^(3+)exist in the form of[AlO_(4)]^(5-)because of the effect of CaO and Na_(2)O,as the network former.Finally,the degree of polymerization of the three type molten slag was calculated by considering the role of Si and Al in molten slag and the property of each one.展开更多
Centrifugal granulation is one key step to enable waste heat recovery from the molten slag in the iron and steel industry.Yet,it remains unknown about the granulation characteristics of molten slag with different chem...Centrifugal granulation is one key step to enable waste heat recovery from the molten slag in the iron and steel industry.Yet,it remains unknown about the granulation characteristics of molten slag with different chemical compositions,especially at high throughput.In this work,we provided an experimental study on centrifugal granulation with four types of molten slags.The stage-specific centrifugal granulation was recorded and analyzed at first.Both effects of atomizer configuration and chemical compositions on granulation were investigated in detail.The cup-type atomizer favors film-mode disintegration and possesses better anti-adhesion capacity although the final granule size was not strongly affected by the atomizer configuration.Most importantly,centrifugal granulation has been demonstrated with appreciable adaptability to composition-specific blast furnace(BF)slag with binary basicity of 0.9-1.3.The present study not only sheds light on the modest effect of the chemical composition of molten slag on centrifugal granulation characteristics,but also gains credit for the adaptivity of CGATER.展开更多
The activity of FetO is very important in ironmaking and steelmaking process. In order to predict the activ- ity of Fe, O and optimize the operation conditions in ironmaking and steelmaking process, by application of ...The activity of FetO is very important in ironmaking and steelmaking process. In order to predict the activ- ity of Fe, O and optimize the operation conditions in ironmaking and steelmaking process, by application of regular so lution model in molten slag systems, FeO-Fe2 O3-SIO2 ternary system, FeO-Fe2 O3-SiO2-CaO and FeO-Fe2 O3-SiO2-NiO quaternary systems have been studied by the chemical equilibrium between H2/H20 gas mixture and liquid slag con tained in solid iron. The values of interaction energy between cations concerning steelmaking slags have been deter- mined by application of ferric-ferrous iron equilibrium and iron-ferric iron equilibrium. And then the activity of Fe, O can be calculated. The results show that the relative error is 3.9% in FeO-Fe203-SiO2 system and 18% in FeO- Fe203-SiO2 CaO system. The prediction of activities of FetO in the systems are in good agreement with the measure- ments and the regular solution model is valid for predicting the activity of FetO in complex molten slags systems. The activity of Fe, O in FeO-Fe20a-NiO system have not been tested presently, and the calculated result can not be assessed.展开更多
The oxygen-ion conductor, the reducing agent, and the molten oxide slag containing electroactive matter were used as constituent of a galvanic cell. Metal was directly electroreduced from molten slag using a short-cir...The oxygen-ion conductor, the reducing agent, and the molten oxide slag containing electroactive matter were used as constituent of a galvanic cell. Metal was directly electroreduced from molten slag using a short-circuit galvanic cell. The following galvanic cell was assembled in the present experiment: graphite rod, [-O]Fe-C saturated |ZrO2 (MgO) | Cu(1) + (FeO)(slag) , and molybdenum wire. The FeO electroreduction reaction was studied through measuring short circuit current by controlling factors such as temperature, the FeO content in molten slags, and the external circuit resistance. An overall kinetics model was developed to describe the process of FeO electroreductiono It was found that the modeled curves were in good agreement with the experimental values. The new oxide reduction method in the metallurgy with controlled oxygen flow was proposed and the metallurgical theory with controlled oxygen flow was developed.展开更多
文摘In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through open channels. The transient and steady-state flow of a molten slag in a rectangular open channel is numerically analyzed here. For the transient flow, the Saint-Venant equations were numerically solved. For the steady-state flow, the derivatives in time and space in the Saint-Venant equations were set equal to zero and a polynomial of degree 3 is obtained whose roots are the slag height values. It was assumed that the viscosity of the slag has an Arrhenius-type behavior with temperature. Four values of temperature values, namely 1723.15, 1773.15, 1823.15, 18873.15 ˚K, and five values of the angle of inclination of the channel, namely 1, 2, 3, 4, 5 degrees, are considered. Numerical results show that the steady-state values of the height and velocity of the molten slag depend strongly on the temperature of the slag and the angle of inclination of the channel. As the slag temperature and channel angle increase, the value of the steady-state slag height decreases. The value of the steady-state slag velocity increases as the slag temperature and channel inclination angle increase.
基金financially supported by the National Science Foundation of China (Nos. 51090383 and 51174051)
文摘Experimental studies on the rheological properties of a Ca O–Si O2–Al2O3–Mg O–Ti O2–(Ti C) blast furnace(BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different Ti C contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing Ti C content, the viscosity of the molten slag tended to increase. If the Ti C content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the Ti C content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the Ti C content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.
文摘An approach was made to correlate the proposed model of ion-cluster structure and structural parameter of TiO_2-bearing pentan system of molten slag with properties.Re- sults showed that an increase of ions with 4-coordination number in molten slag makes the increase of bulk viscosity and the decrease of density,while ions with 6-coordination number are the contrary.The structural parameter proposed is so fairly interrelated to the properties of slag,that it may be available for the prediction about properties.In comparison with ions of 4-coordination number.Ti is more effective than Al and Si.
基金supported by the National Natural Science Foundation of China(52272022)Key Program of the Natural Science Foundation of Hubei Province of China(2021CFA071).
文摘High alumina slag will cause severe corrosion at the interface of alumina refractory,and the wetting behavior of slag is a key factor influencing the corrosion resistance of refractory ceramics.The static magnetic field is a promising solution for improvement in the slag resistance of refractory.The wetting of alumina refractory ceramics with different basicities of high alumina slags under a weak static magnetic field was analyzed,given that a weak static magnetic field can affect the corrosion behavior of refractory ceramics.Taking slag S_(3) as an example,when there was an external static magnetic field of 1.0 mT at 1600 ℃,the thickness of calcium aluminate reaction layer at the interface decreased by 36.7%,the denting depth of interface decreased by 35.6%,and the apparent wetting angle increased by 20%.The living radicals and their formation path in oxide melts were verified by first-principles calculation combined with electron paramagnetic resonance spectroscopy analysis.The influence of the flux density of a weak static magnetic field on the wetting behavior of slags was also explored.The contact angle of the slags increased owing to the inhibitory effect of magnetic field on the radicalinvolved reaction at the interface of the slag and the alumina refractory ceramic.The relationships between the magnetic flux density,diffusion coefficient,slag microstructure(hyperfine coupling constant),and contact angle were established.This provides a theoretical basis for the field control of radical involved reactive wetting between inorganic oxide slags and solid oxide ceramics.
文摘Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular open channel is numerically studied by solving the Saint-Venant equations by means of an explicit backwards finite difference scheme. An Arrhenius-type dependence of the viscosity of the slag on temperature is assumed. To calculate that viscosity, four temperatures are considered, namely 1450˚C, 1500˚C, 1550˚C and 1600˚C. To study the dynamic response of the system, a half-sinusoidal pulse with duration of 5 s is imposed at the channel entrance. According to the numerical simulations, for all the temperatures considered, the slag flow in the channel for an angle of 5 degrees is supercritical in nature. However, for an angle of 1 degree, the flow is transcritical, that is, it presents a transition from subcritical to supercritical.
基金Project(2013CB632600)supported by the National Basic Research and Development Program of China
文摘A novel process of vanadium extraction from vanadium slag in its molten state was conducted at the laboratory scale by oxidation with pure oxygen in the presence of CaO. The effect of mass ratio of CaO to V2O5 on the recovery of vanadium was studied. The sintered samples were leached by H2SO4 solution and characterized by XRD, XPS, SEM and EDS techniques. Compared with the roasting process, the energy saving effect of the proposed process was also discussed. The results showed that vanadium-rich phases were formed and vanadium mainly existed in the forms of CaV2O5 and Ca2V2O7. The formation mechanism of calcium vanadates in the molten vanadium bearing slag was explained. The XRD and XPS results implied that there was a limit to the oxidation reaction of V(IV) to V(V) under the high temperatures even though oxygen-supply was sufficient. An increase in the CaO content led to an increase in the formation of Ca2V2O7. About 90%of the vanadium recovery was obtained under optimal experiment conditions (mass ratio of CaO to V2O5 of 0.6, particle size 120 to 150μm, leaching temperature 90 °C, leaching time 2 h, H2SO4 concentration 20%, liquid to solid ratio 5:1 mL/g, stirring speed 500 r/min). The energy of 1.85×106 kJ could be saved in every 1000 kg of vanadium bearing slag using the proposed process from the theoretical calculation results. Recovery of vanadium from the molten vanadium bearing slag and utilisation of its heat energy are important not only for saving metal resources, but also for energy saving and emission reduction.
基金Sponsored by China Postdoctoral Science Foundation(20110491517)Fundamental Research Funds for Central Universities of China(N100402012)Doctor Start-Up Fund of Natural Science Foundation of Liaoning Province of China(201120004)
文摘A physical model of molten slag granulation by rotary disk was developed based on the mechanism of New-tonian liquid granulation. For geometrical similarity, the radius ratio of model disk to the prototype disk was chosen as 1 : 1. For dynamic similarity, equality of Ohnesorge number between the model and the prototype was achieved firstly by compounding rosin and paraffin wax with mass ratio of 4 ~ 1 as simulation liquid of molten blast furnace (BF) slag, and the simulation material can satisfy the similarity of liquid solid transformation during falling in the medium; then equality of Reynolds number and Weber number was obtained by controlling the volumetric flow rate and the rotary speed, respectively. Model accuracy was verified by comparing the simulation data with the results re ported in literature, which showed good agreement with the calculation results of empirical equation and the actual molten BF slag granulation from the view point of particle size. Furthermore, influences of disk radius, rotary speed and liquid flow rate on granulation were discussed using the developed model, and the Kitamura equation was modi-fied according to the simulation data which can predict particle size more accurately. Using the modified equation, the operation parameters were predicted according to the flow rate of molten industrial BF slag.
基金financially supported by the National Natural Science Foundation of China(Nos.51272025 and 51072022)the State Basic Research Development Program of China(973 Program)(No.2007CB613608)the New Century Excellent Researcher Award Program from Ministry of Education of China(No.NCET-08-0732)
文摘Nanostructured TiO2 with different morphologies and crystal phases was successfully synthesized from titanium-containing electric furnace molten slag by using a hydrothermal method followed by reflux process in acid solution. The effects of acid concentration, reflux time, and acid type on the formation of TiO2 were systematically investigated by scanning electron microscopy, X-ray dif- fraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and X-ray fluorescence (XRF). It is indicated that TiO2 nanorod with rutile phase is achieved in nitric or hydrochloric acid, while anatase TiO2 nanodisk is formed in sulfuric acid. With the increase of the concentration of hydrochloric acid from 0.3 to 1.5 mol-L-1, the dispersibility and crystallinity of the final product can be improved. With prolonging the reflux time from 6 to 14 h, the rutile TiO2 nanorod with uniform crystal size and high crystallinity is obtained. The growth mechanism of TiO2 nanorod and nanodisk prepared under different conditions was also discussed.
基金This work was financially supported by the National Natural Science Foundation of China (No.59934090) and the National Key Basic Research and Development Program of China (No.G1998061506)
文摘The oxygen-ion-permeable membrane galvanic short-circuit method has been developed, in which pure metal was directly extracted from the molten oxide slag, and no external voltage is applied. The galvanic cell employed in the experiment was as follows: graphite rod|[O]Fe+C saturation|ZrO2(MgO)|(FeO)(slag)|Fe rod. The reduction current in the galvanic cell consisted of an external short-circuit current and an interior short-circuit current in the oxygen-ion-permeable membrane. The real-time variation of external circuit reduction ratio of the molten slag could be obtained from the curve of the external circuit current to the time.
文摘The oxygen-ion-permeable membrane galvanic short-circuit method has been developed, in which pure metal was directly extracted from the molten oxide slag, and no external voltage is applied. The galvanic cell employed in the experiment was as follows: graphite rod|[O]_(Fe+C saturation)[ZrO_2(MgO)|(FeO)_(slag))|Fe rod. The reduction current in the galvanic cell consisted of an external short-circuit current and an interior short-circuit current in the oxygen-ion-permeable membrane. The real-time variation of external circuit reduction ratio of the molten slag could be obtained from the curve of the external circuit current to the time.
文摘The molten slag in smelting reduction with iron bath has peculiar behaviour for its high FeO concentration. Slag foaming is effected by the concentration and reduction rate of FeO, basicity of slag and temperature. Addition of granulated coke can greatly decrease slag foaming extent in the process of smelting reduction with iron bath. The anti-foaming capacity of granulated coke is the best when the ratio of coke used for coke layer to total coke used in smelting reduction is controlled at about 20%.
基金supported by the National Basic Research Program of China(Nos.2014CB643401,2013AA032003)the National Nature Science Foundation of China(Nos.51372019,51277025 and 51072022)
文摘TiO_2 visible light catalysts with different crystalline phases and morphologies were synthesized from titanium-bearing electric arc furnace molten slag(Ti-bearing EAF slag)by using a simple acidolysis process.The effects of the p H of the HCl solution,liquid to solid ratio(RL/S,HCl solution to the residue ratio,m L/g) and acidolysis time on the micro-morphology and crystalline phase of as-prepared TiO_2 photocatalysts were systematically investigated.The results indicated that with decreasing p H in the HCl solution and increasing RL/S,the crystalline phase and micro-morphology of the obtained TiO_2 nanostructures tended to transform from anatase type TiO_2 with spherical nanoparticle structures to rutile type TiO_2 with needle-like nanorod structures.The acidolysis time had little influence on the crystalline phase but great impact on the size of the obtained TiO_2.The growth mechanism of TiO_2 from Ti-bearing EAF slag during the acidolysis process was also discussed.In addition,the influence of RL/Son the photocatalytic properties of the synthesized nanostructured TiO_2 was studied.The results showed that the photodegradation efficiency for Rhodamine B solution could reach 91.00% in 120 min when the RL/Swas controlled at 50:1.
文摘Activity of TiO_2 in the molten blast furnace slag containing TiO_2 has been examined at 1500℃ by means of “molten slag-Sn” chemical equilibrium method,using metallic Sn as flux and graphite as deoxidizer,together with phase diagram caIculation.In the pentary slag system CaO-MgO-SiO_2-TiO_2-Al_2O_3,a_(TiO_2)=0.01—0.05 or 0.02—0.10 with pure liquid or solid TiO_2 as standard state,respectively.The activity and activity coefficient of TiO_2 in relation to concentration of TiO_2 have been discussed.
基金Item Sponsored by National Natural Science Foundation of China(50764006,50574045)Yunnan Basic Applied Research Foundation of China(2006E0021M)
文摘Modified quasi-regular solution model has been available based on the sub-regular solution model and quasiregular solution model in this article. The three parameters of this model are set by the computer-aided analysis based on the experimental data of activity at two different temperatures. Seven binary molten slag systems in the whole concentration are calculated by application of the model and the average relative error is within 10%. Ten binary molten slag systems presenting saturation concentration are also calculated, but the average relative error is bigger, especially for the systems containing acidic oxide and neutral oxide. The results show that the calculated results are superior to those calculated by application of regular solution model, sub-regular solution model and quasi-regular solution model.
基金This study was supported by the National Natural Science Foundation of China (Nos. 51471122 and 51604202), the China Postdoctoral Science Foundation (No. 2016M592397) and the Science and Technology Project of Guangdong Province (No. 2013B090600025).
文摘A novel route to comprehensive utilization of valuable elements such as Ti, A1, Si and Mg in Ti-bearing electric arc furnace molten slag (Ti-bearing EAF slag) was proposed. The route can be expressed as a three-step process including alkali fusion, water leaching and acidolysis. Following these processes under the optimum conditions, the recovery ratios of TiO2, Al2O3, SiO2 and MgO were about 97.5, 93.5, 27.9 and 53.5%, respectively. Meanwhile, nanostructured TiO2, NaA zeolite and Mg(OH)2 fire retardant were synthesized simultaneously by using Ti-bearing EAF slag as raw materials. In addition, the photocatalytic activity of prepared nanostructured TiO2 and the adsorption property of obtained NaA zeolite were investigated. The results showed that the photodegradation efficiency of as-prepared TiO2 was 80% for rhodamine B and the adsorption efficiency of NaA zeolite was 61% for Cu2+ under the optimum conditions.
基金financially supported by Class A Strategic Pilot Science and Technology Project,Chinese Academy of Sciences(Grant No.XDA21040602)the National Natural Science Foundation of China(Grant No.U1810127)the Youth Innovation Promotion Association,Chinese Academy of Science(Grant No.Y201932)。
文摘The entrained flow gasification has been identified as the most promising gasification technology.Serious environmental pollution and waste of land resources are caused by the increasing amount of storage and production of coal gasification slag.The aim of this work is to explore the feasibility of high-temperature combustion and melting technology for treating coal gasification fine slag and determine the important parameters of system operation.The flow properties and molten slag structure characteristics of three fine slags from different entrained flow gasifiers were studied.Depending on the melting mechanism of melt-dissolution,the melting time of fine slags is short.Three fine slags all produce glassy slags,which is conducive to slag discharge.The degree of polymerization of silicate melt is proportionate to the amount of SiO_(2)in the slag.A part of Al^(3+)exist in the form of[AlO_(4)]^(5-)because of the effect of CaO and Na_(2)O,as the network former.Finally,the degree of polymerization of the three type molten slag was calculated by considering the role of Si and Al in molten slag and the property of each one.
基金supported by the National Natural Science Foundation of China(Grant No.:52206070)Innovative Research Group Project of National Natural Science Foundation of China(Grant No.:52021004)+1 种基金Venture&Innovation Support Program for Chongqing Overseas Returnees(Grant No.:cx2021080)National Natural Science Foundation of China(Grant No.:52106074).
文摘Centrifugal granulation is one key step to enable waste heat recovery from the molten slag in the iron and steel industry.Yet,it remains unknown about the granulation characteristics of molten slag with different chemical compositions,especially at high throughput.In this work,we provided an experimental study on centrifugal granulation with four types of molten slags.The stage-specific centrifugal granulation was recorded and analyzed at first.Both effects of atomizer configuration and chemical compositions on granulation were investigated in detail.The cup-type atomizer favors film-mode disintegration and possesses better anti-adhesion capacity although the final granule size was not strongly affected by the atomizer configuration.Most importantly,centrifugal granulation has been demonstrated with appreciable adaptability to composition-specific blast furnace(BF)slag with binary basicity of 0.9-1.3.The present study not only sheds light on the modest effect of the chemical composition of molten slag on centrifugal granulation characteristics,but also gains credit for the adaptivity of CGATER.
基金Sponsored by National Natural Science Foundation of China (50764006,50574045)Yunnan Basic Applied Research Foundation of China (2006E0021M)
文摘The activity of FetO is very important in ironmaking and steelmaking process. In order to predict the activ- ity of Fe, O and optimize the operation conditions in ironmaking and steelmaking process, by application of regular so lution model in molten slag systems, FeO-Fe2 O3-SIO2 ternary system, FeO-Fe2 O3-SiO2-CaO and FeO-Fe2 O3-SiO2-NiO quaternary systems have been studied by the chemical equilibrium between H2/H20 gas mixture and liquid slag con tained in solid iron. The values of interaction energy between cations concerning steelmaking slags have been deter- mined by application of ferric-ferrous iron equilibrium and iron-ferric iron equilibrium. And then the activity of Fe, O can be calculated. The results show that the relative error is 3.9% in FeO-Fe203-SiO2 system and 18% in FeO- Fe203-SiO2 CaO system. The prediction of activities of FetO in the systems are in good agreement with the measure- ments and the regular solution model is valid for predicting the activity of FetO in complex molten slags systems. The activity of Fe, O in FeO-Fe20a-NiO system have not been tested presently, and the calculated result can not be assessed.
基金Item Sponsored by National Natural Science Foundation of China (50274008 ,50574011) Provincial Natural Science Foundationof Hubei Province of China (2005ABA019)
文摘The oxygen-ion conductor, the reducing agent, and the molten oxide slag containing electroactive matter were used as constituent of a galvanic cell. Metal was directly electroreduced from molten slag using a short-circuit galvanic cell. The following galvanic cell was assembled in the present experiment: graphite rod, [-O]Fe-C saturated |ZrO2 (MgO) | Cu(1) + (FeO)(slag) , and molybdenum wire. The FeO electroreduction reaction was studied through measuring short circuit current by controlling factors such as temperature, the FeO content in molten slags, and the external circuit resistance. An overall kinetics model was developed to describe the process of FeO electroreductiono It was found that the modeled curves were in good agreement with the experimental values. The new oxide reduction method in the metallurgy with controlled oxygen flow was proposed and the metallurgical theory with controlled oxygen flow was developed.