The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electro...The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electrolyte,Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3),utilizing cyclic voltammetry and square wave voltammetry techniques.The results show that Fe(Ⅲ)reduction occurs in two steps:Fe(Ⅲ)+e^(−)→Fe(Ⅱ),Fe(Ⅱ)+2e^(−)→Fe,and that the redox process of Fe(Ⅲ)/Fe(Ⅱ)at the tungsten electrode is an irreversible reaction controlled by diffusion.The diffusion coefficients of Fe(Ⅲ)in the molten Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3)in the temperature range of 1248–1278 K are between 1.86×10^(−6)cm^(2)/s and 1.58×10^(−4)cm^(2)/s.The diffusion activation energy of Fe(Ⅲ)in the molten salt is 1825.41 kJ/mol.As confirmed by XRD analysis,potentiostatic electrolysis at−0.857 V(vs.O_(2)/O_(complex)^(2-))for 6 h produces metallic iron on the cathode.展开更多
Despite its existence for more than 80 years,the titanium industry is still challenged by massive carbon emissions,high production costs,and large resource waste.More than one hundred million tons of Ti-bearing blast ...Despite its existence for more than 80 years,the titanium industry is still challenged by massive carbon emissions,high production costs,and large resource waste.More than one hundred million tons of Ti-bearing blast furnace slag(TB-slag)has been discarded in China because of the difficulty of reutilization,which requires efficient titanium extraction and recovery technologies.This paper describes a low-cost,carbon-emission-free method for Ti extraction and oxygen evolution via molten oxide electrolysis(MOE)vacuum distillation.After a comprehensive analysis of the binding energies and activities of liquid metals,the highlights of our study are as follows.1)Sb has the best preferential deposition of Ti among a series of high-Ti-affinitive liquid metal cathodes(Cu,Ni,Pb,Sn,and Sb).2)The Ir anode was first used in TB-slag with IrO_(2) formed on its surface to protect it from further corrosion.3)An alloy containing Ti and Ca can be obtained by MOE,and Ti and Ca metals can be refined by further vacuum distillation.4)A closed loop is formed in the overall process owing to the recyclable Sb cathode and continuous feeding of TB-slag into the electrolyte.This simple,low-cost,and environmentally friendly method can realize the efficient utilization of Ti resources and achieve carbon neutrality.展开更多
基金Project(52074084)supported by the National Natural Science Foundation of China。
文摘The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electrolyte,Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3),utilizing cyclic voltammetry and square wave voltammetry techniques.The results show that Fe(Ⅲ)reduction occurs in two steps:Fe(Ⅲ)+e^(−)→Fe(Ⅱ),Fe(Ⅱ)+2e^(−)→Fe,and that the redox process of Fe(Ⅲ)/Fe(Ⅱ)at the tungsten electrode is an irreversible reaction controlled by diffusion.The diffusion coefficients of Fe(Ⅲ)in the molten Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3)in the temperature range of 1248–1278 K are between 1.86×10^(−6)cm^(2)/s and 1.58×10^(−4)cm^(2)/s.The diffusion activation energy of Fe(Ⅲ)in the molten salt is 1825.41 kJ/mol.As confirmed by XRD analysis,potentiostatic electrolysis at−0.857 V(vs.O_(2)/O_(complex)^(2-))for 6 h produces metallic iron on the cathode.
基金This work has been supported by National Natural Science Foundation of China(51725401).
文摘Despite its existence for more than 80 years,the titanium industry is still challenged by massive carbon emissions,high production costs,and large resource waste.More than one hundred million tons of Ti-bearing blast furnace slag(TB-slag)has been discarded in China because of the difficulty of reutilization,which requires efficient titanium extraction and recovery technologies.This paper describes a low-cost,carbon-emission-free method for Ti extraction and oxygen evolution via molten oxide electrolysis(MOE)vacuum distillation.After a comprehensive analysis of the binding energies and activities of liquid metals,the highlights of our study are as follows.1)Sb has the best preferential deposition of Ti among a series of high-Ti-affinitive liquid metal cathodes(Cu,Ni,Pb,Sn,and Sb).2)The Ir anode was first used in TB-slag with IrO_(2) formed on its surface to protect it from further corrosion.3)An alloy containing Ti and Ca can be obtained by MOE,and Ti and Ca metals can be refined by further vacuum distillation.4)A closed loop is formed in the overall process owing to the recyclable Sb cathode and continuous feeding of TB-slag into the electrolyte.This simple,low-cost,and environmentally friendly method can realize the efficient utilization of Ti resources and achieve carbon neutrality.