期刊文献+
共找到3,235篇文章
< 1 2 162 >
每页显示 20 50 100
Dynamic simulation analysis of molten salt reactor-coupled air-steam combined cycle power generation system
1
作者 Jing-Lei Huang Guo-Bin Jia +3 位作者 Li-Feng Han Wen-Qian Liu Li Huang Zheng-Han Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期222-233,共12页
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol... A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability. 展开更多
关键词 molten salt reactor Combined cycle Dynamic characteristic CONTROL
下载PDF
Study on the effect of thermal deformation on the liquid seal of high-temperature molten salt pump in molten salt reactor 被引量:1
2
作者 Xing‑Chao Shen Yuan Fu Jian‑Yu Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期128-138,共11页
The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt p... The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt pump,and the liquid seal at the wear ring can affect the dynamic characteristics of the rotor system.When the molten salt pump is operated in the hightemperature molten salt medium,thermal deformation of the submerged parts inevitably occurs,changing clearance between the stator and rotor,affecting the leakage and dynamic characteristics of the seal.In this study,the seal leakage,seal dynamic characteristics,and rotor system dynamic characteristics are simulated and analyzed using finite element simulation software based on two cases of considering the effect of seal thermal deformation effect or not.The results show a significant difference in the leakage characteristics and dynamic characteristics of the seal obtained by considering the effect of seal thermal deformation and neglecting the effect of thermal deformation.The leakage flow rate decreases,and the first-order critical speed of the seal-bearing-rotor system decrease after considering the seal’s thermal deformation. 展开更多
关键词 High-temperature molten salt pump Seal thermal deformation Leakage characteristics Seal dynamic characteristics Critical speed
下载PDF
Molten Salt-Shielded Synthesis(MS^(3))of MXenes in Air 被引量:1
3
作者 Jinjin Chen Qianqian Jin +7 位作者 Youbing Li Hui Shao Pengcheng Liu Ying Liu Pierre-Louis Taberna Qing Huang Zifeng Lin Patrice Simon 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期159-164,共6页
MXenes are two-dimensional transition metal carbides and/or nitrides with unique physiochemical properties and have attracted extensive interest in numerous fields.However,current MXene synthesis methods are limited b... MXenes are two-dimensional transition metal carbides and/or nitrides with unique physiochemical properties and have attracted extensive interest in numerous fields.However,current MXene synthesis methods are limited by hazardous synthesis conditions,high production costs,or difficulty in largescale production.Therefore,a general,safe,cost-effective,and scalable synthesis method for MXenes is crucial.Here,we report the fast synthesis of MXenes in the open air using a molten salt-shielded synthesis(MS^(3))method,which uses Lewis-acid salts as etchants and a low-melting-point eutectic salt mixture as the reaction medium and shield to prevent MXene oxidation at high temperatures.Carbide and nitride MXenes,including Ti_(3)C_(2)T_(x),Ti_(2)CT_(x),Ti_(3)CNT_(x),and Ti_(4)N_(3)T_(x),were successfully synthesized using the MS^(3) method.We also present the flexibility of the MS^(3) method by scaling the etching process to large batches of 20 and 60 g of Ti_(3)AlC_(2) MAX precursor in one pot.When used as negative electrodes,the prepared MS^(3)-MXenes delivered excellent electrochemical properties for high-rate Li-ion storage. 展开更多
关键词 carbides lithium-ion storage molten salt synthesis MXene nitrides
下载PDF
Molten salt synthesis,morphology modulation,and lithiation mechanism of high entropy oxide for robust lithium storage
4
作者 Xuefeng Liu Honghong Wang +5 位作者 Long Dong Kezhuo Li Haijun Zhang Quanli Jia Shaowei Zhang Wen Lei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期536-545,I0011,共11页
High entropy oxides(HEOs)with ideal element tunability and enticing entropy-driven stability have exhibited unprecedented application potential in electrochemical lithium storage.However,the general control of dimensi... High entropy oxides(HEOs)with ideal element tunability and enticing entropy-driven stability have exhibited unprecedented application potential in electrochemical lithium storage.However,the general control of dimension and morphology remains a major challenge.Here,scalable HEO morphology modulation is implemented through a salt-assisted strategy,which is achieved by regulating the solubility of reactants and the selective adsorption of salt ions on specific crystal planes.The electrochemical properties,lithiation mechanism,and structure evolution of composition-and morphology-dependent HEO anode are examined in detail.More importantly,the potential advantages of HEOs as electrode materials are evaluated from both theoretical and experimental aspects.Benefiting from the high oxygen vacancy concentration,narrow band gap,and structure durability induced by the multi-element synergy,HEO anode delivers desirable reversible capacity and reaction kinetics.In particular,Mg is evidenced to serve as a structural sustainer that significantly inhibits the volume expansion and retains the rock salt lattice.These new perspectives are expected to open a window of opportunity to compositionally/morphologi cally engineer high-performance HEO electrodes. 展开更多
关键词 High-entropy oxide Lithium-ion battery anode molten salt Morphology modulation Structure stability
下载PDF
Preparation of Zr-Cu Coatings on Copper Substrate Using a Molten Salt Method
5
作者 LI Yusha ZHANG Yingchun +2 位作者 LIU Yanhong LI Guangbin DONG Xiaoxun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1155-1160,共6页
Dense zirconium coatings on copper substrates were obtained in an alumina crucible and a stainless steel crucible from FLiNaK-K_(2)ZrF_(6)molten salt at 1023 K.Due to the potential difierences between copper and zirco... Dense zirconium coatings on copper substrates were obtained in an alumina crucible and a stainless steel crucible from FLiNaK-K_(2)ZrF_(6)molten salt at 1023 K.Due to the potential difierences between copper and zirconium,zirconium can difiuse into the copper substrate to form zirconium alloys on the surface of copper substrates in the course of deposition.The coating deposited in a stainless steel crucible has a gray surface.The components of the coating are mainly CuZr2alloy and Cu_(10)Zr_(7)alloy,and,the outermost layer of the coating is a layer of amorphous pure zirconium.The coating deposited in an alumina crucible has a silvery white metallic luster.The components of the coating are mainly Cu-Zr-Al intermetallic compounds,AlCu_(2)Zr,ZrAl,AlCu and CuZr.Furthermore,two types of zirconium coatings can greatly increase the hardness of the substrate. 展开更多
关键词 COATING Zr-Cu molten salt intermetallic compounds
下载PDF
Advances in Molten Salt Synthesis of Non-oxide Materials
6
作者 Shaolong Li Jianxun Song +3 位作者 Yusi Che Shuqiang Jiao Jilin He Bin Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期239-251,共13页
The properties of non-oxide materials are continuously revealed,and their applications in the fields of ceramics,energy,and catalysis are increasingly extensive.Regardless of the traditional binary materials or the MA... The properties of non-oxide materials are continuously revealed,and their applications in the fields of ceramics,energy,and catalysis are increasingly extensive.Regardless of the traditional binary materials or the MAX phases,the preparation methods,which are environmentally friendly,efficient,economical,and easy to scale-up,have always been the focus of attention.Molten salt synthesis has demonstrated unparalleled advantages in achieving non-oxide materials.In addition,with the development of the process in molten salt synthesis,it also shows great potential in scale-up production.In this review,the recent progress of molten salt synthesis in the preparation of binary non-oxide and MAX phase is reviewed,as well as some novel processes.The reaction mechanisms and the influence of synthetic conditions for certain materials are discussed in detail.The paper is finalized with the discussion of the application prospect and future research trends of molten salt synthesis in non-oxide materials. 展开更多
关键词 MAX phases molten salt NANOSTRUCTURE SYNTHESIS
下载PDF
Preparation of Periclase-forsterite Lightweight Heat-insulating Refractories by Molten Salt Method
7
作者 WANG Shaoyang HOU Qingdong +3 位作者 QI Xin LUO Xudong YOU Jiegang ZHANG Ling 《China's Refractories》 CAS 2023年第4期33-37,共5页
Low grade magnesite is one of the main research directions in the future as the raw material for the preparation of magnesia based insulating refractories.Periclase-forsterite(MgO-Mg_(2)SiO_(4)) lightweight insulating... Low grade magnesite is one of the main research directions in the future as the raw material for the preparation of magnesia based insulating refractories.Periclase-forsterite(MgO-Mg_(2)SiO_(4)) lightweight insulating refractories were prepared by the molten salt method with high silica magnesite and tertiary talc ore as raw materials by pretreating them to get light burnt magnesia and talc,and NaCl molten salt as the reaction medium.The effects of the NaCl addition,the sintering temperature,the holding time and the raw material ratio on the sample preparation were studied.The results show that when the NaCl addition is 20% of the mass of light burnt magnesia and talc mixture,the sintering temperature is 1 200 ℃,the holding time is 6 h,and m(light burnt magnesia):m(talc)=5:5,the sample has the optimal comprehensive properties:the bulk density of 1.46 g·cm^(-3) and the apparent porosity of 55.0%.In addition,it is found that self-decomposition of talc and the formation of forsterite can form pores inside the sample. 展开更多
关键词 sodium chloride molten salt PERICLASE FORSTERITE lightweight insulating material
下载PDF
Synchrotron radiation-based materials characterization techniques shed light on molten salt reactor alloys 被引量:6
8
作者 Li Jiang Xiang-Xi Ye +1 位作者 De-Jun Wang Zhi-Jun Li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第1期57-71,共15页
From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt ... From a safety point of view, it is important to study the damages and reliability of molten salt reactor structural alloy materials, which are subjected to extreme environments due to neutron irradiation, molten salt corrosion, fission product attacks, thermal stress, and even combinations of these. In the past few years, synchrotron radiation-based materials characterization techniques have proven to be effective in revealing the microstructural evolution and failure mechanisms of the alloys under surrogating operation conditions. Here, we review the recent progress in the investigations of molten salt corrosion,tellurium(Te) corrosion, and alloy design. The valence states and distribution of chromium(Cr) atoms, and the diffusion and local atomic structure of Te atoms near the surface of corroded alloys have been investigated using synchrotron radiation techniques, which considerably deepen the understandings on the molten salt and Te corrosion behaviors. Furthermore, the structure and size distribution of the second phases in the alloys have been obtained, which are helpful for the future development of new alloy materials. 展开更多
关键词 molten salt reactor Alloy materials Synchrotron radiation Shanghai Synchrotron Radiation Facility molten salt corrosion Tellurium corrosion
下载PDF
Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery 被引量:4
9
作者 Xiao-li Ming Feng +1 位作者 Li-wen Zhang Zuo-ren Nie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第12期1599-1617,共19页
Molten salt is an excellent medium for chemical reaction,energy transfer,and storage.Molten salt innovative technologies should be developed to recover metals from secondary resources and reserve metals from primary n... Molten salt is an excellent medium for chemical reaction,energy transfer,and storage.Molten salt innovative technologies should be developed to recover metals from secondary resources and reserve metals from primary natural sources.Among these technologies,molten salt electrolysis is an economic and environment-friendly method to extract metals from waste materials.From the perspective of molten salt characteristics,the application of molten salts in chemistry,electrochemistry,energy,and thermal storage should be comprehensively elaborated.This review discusses further directions for the research and development of molten salt electrolysis and their use for metal recovery from various metal wastes,such as magnet scrap,nuclear waste,and cemented carbide scrap.Attention is placed on the development of various electrolysis methods for different metal containing wastes,overcoming some problems in electrolytes,electrodes,and electrolytic cells.Special focus is given to future development directions for current associated processing obstacles. 展开更多
关键词 molten salt application molten salt electrochemistry resource recycling cemented carbide scrap
下载PDF
Preliminary analysis of fuel cycle performance for a small modular heavy water-moderated thorium molten salt reactor 被引量:3
10
作者 Ya-Peng Zhang Yu-Wen Ma +2 位作者 Jian-Hui Wu Jin-Gen Chen Xiang-Zhou Cai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第11期23-35,共13页
Heavy water-moderated molten salt reactors(HWMSRs)are novel molten salt reactors that adopt heavy water rather than graphite as the moderator while employing liquid fuel.Owing to the high moderating ratio of the heavy... Heavy water-moderated molten salt reactors(HWMSRs)are novel molten salt reactors that adopt heavy water rather than graphite as the moderator while employing liquid fuel.Owing to the high moderating ratio of the heavy water moderator and the utilization of liquid fuel,HWMSRs can achieve a high neutron economy.In this study,a large-scale small modular HWMSR with a thermal power of 500 MWth was proposed and studied.The criticality of the core was evaluated using an in-house critical search calculation code(CSCC),which was developed based on Standardized Computer Analyses for Licensing Evaluation,version 6.1.The preliminary fuel cycle performances(initial conversion ratio(CR),initialfissile fuel loading mass,and temperature coefficient)were investigated by varying the lattice pitch(P)and the molten salt volume fraction(VF).The results demonstrate that the temperature coefficient can be negative over the range of investigated Ps and VFs for both 233U-Th and LEU-Th fuels.A core with a P of 20 cm and a VF of 20%is recommended for 233U-Th and LEU-Th fuels to achieve a high performance of initial CR and fuel loading.Regarding TRU-Th fuel,a core with a smaller P(~5 cm)and larger VF(~24%)is recommended to obtain a negative temperature coefficient. 展开更多
关键词 molten salt reactor Heavy water-moderated molten salt reactor(HWMSR) Th-U fuel cycle
下载PDF
Experimental study on the penetration characteristics of leaking molten salt in the thermal insulation layer of aluminum silicate fiber 被引量:2
11
作者 Yun Wang Jian Tian +2 位作者 Shan-Wu Wang Chong Zhou Na-Xiu Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第9期27-39,共13页
The molten salt leakage accident is an important issue in the nuclear safety analysis of molten salt reactors.While the molten salt leaks from the pipeline or storage tank,it will contact the insulation layer outside;... The molten salt leakage accident is an important issue in the nuclear safety analysis of molten salt reactors.While the molten salt leaks from the pipeline or storage tank,it will contact the insulation layer outside;hence,the processes of penetration and spreading play an important role in the development of leakage accidents.In this study,the penetration and diffusion of leaking molten salt(LMS)in an aluminum silicate fiber(ASF)thermal insulation layer were studied experimentally.A molten salt tank with an adjustable outlet was designed to simulate the leakage of molten salt,and the subsequent behavior in the thermal insulation layer was evaluated by measuring the penetra-tion time and penetration mass of the LMS.The results show that when the molten salt discharges from the outlet and reaches the thermal insulation layer,the LMS will penetrate and seep out from the ASF,and a higher flow rate of LMS requires less penetration time and leaked mass of LMS.As the temperature of the LMS and thickness of the ASF increased,the penetration time became longer and the leaked mass became greater at a lower LMS flow rate;when the LMS flow rate increased,the penetration time and leaked mass decreased rapidly and tended to flatten. 展开更多
关键词 molten salt reactor molten salt leakage PENETRATION Insulation layer
下载PDF
CeO_2 as the Oxygen Carrier for Partial Oxidation of Methane to Synthesis Gas in Molten Salts: Thermodynamic Analysis and Experimental Investigation 被引量:14
12
作者 Yonggang Wei Hua Wang Fang He Xianquan Ao Chiyuan Zhang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第1期6-11,共6页
A new technique -- the direct partial oxidation of methane to synthesis gas using lattice oxygen in molten salts medium has been introduced. Using CeO2 as the oxygen carrier, thermodynamic data were calculated in the ... A new technique -- the direct partial oxidation of methane to synthesis gas using lattice oxygen in molten salts medium has been introduced. Using CeO2 as the oxygen carrier, thermodynamic data were calculated in the reaction process, and the results indicated that direct partial oxidation of methane to synthesis gas using lattice oxygen of cerium oxide is feasible in theory. In a stainless steel reactor, the effects of temperature and varying amounts of γ-Al2O3 supported CeO2 on cn4 conversion, H2 and CO selectivity, were investigated, respectively. The results show that 10% CeO2/γ-Al2O3 has the maximal reaction activity at a temperature of 865 ℃ and above, the H2/CO ratio in the gas that has been produced reaches 2 and the CH4 conversion, H2 and CO selectivity reached the following percentages: i.e. 61%, 89%, and 91% at 870 ℃, respectively. In addition, increase of reaction temperature is favorable for the partial oxidation of methane. 展开更多
关键词 partial oxidation METHANE cerium oxide synthesis gas molten salt
下载PDF
Molten salts-modified MgO-based adsorbents for intermediate-temperature CO_2 capture: A review 被引量:13
13
作者 Wanlin Gao Tuantuan Zhou +3 位作者 Yanshan Gao Benoit Louis Dermot O'Hare Qiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期830-838,共9页
Carbon dioxide(CO2) capture using magnesium oxide(MgO)-based adsorbents at intermediate temperatures has been regarded as a very prospective technology for their relatively high adsorption capacity,low cost, and w... Carbon dioxide(CO2) capture using magnesium oxide(MgO)-based adsorbents at intermediate temperatures has been regarded as a very prospective technology for their relatively high adsorption capacity,low cost, and wide availability. During the past few years, great effort has been devoted to the fabrication of molten salts-modified MgO-based adsorbents. The extraordinary progress achieved by coating with molten salts greatly promotes the COcapture capacity of MgO-based adsorbents. Therefore, we feel it necessary to deliver a timely review on this type of COcapturing materials, which will benefit the researchers working in both academic and industrial areas. In this work, we classified the molten saltsmodified MgO adsorbents into four categories:(1) homogenous molten salt-modified MgO adsorbents,(2) molten salt-modified double salts-based MgO adsorbents,(3) mixed molten salts-modified MgO adsorbents, and(4) molten salts-modified MgO-based mixed oxides adsorbents. This contribution critically reviews the recent developments in the synthetic method, adsorption capacity, reaction kinetics, promotion mechanism, operational conditions and regenerability of the molten salts-modified MgO COadsorbents. The challenges and prospects in this promising field of molten salts-modified MgO COadsorbents in real applications are also briefly mentioned. 展开更多
关键词 Global warming Magnesium oxide CO2 adsorption molten salts Intermediate temperatures
下载PDF
Preparation of Mg-Li-Sm alloys by electrocodeposition in molten salt 被引量:7
14
作者 韩伟 田阳 +2 位作者 张密林 颜永得 景晓燕 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期1046-1050,共5页
Electrocodeposition of Mg-Li-Sm alloys was investigated in molten KCl-LiCl-MgCl2-SmCl3-KF system.The effects of electrolytic temperature and cathodic current density on current efficiency were studied and optimal elec... Electrocodeposition of Mg-Li-Sm alloys was investigated in molten KCl-LiCl-MgCl2-SmCl3-KF system.The effects of electrolytic temperature and cathodic current density on current efficiency were studied and optimal electrolysis parameters were obtained.The optimum electrolysis condition was a molten salt mixture of LiCl:KCl =50:50(wt.%),electrolytic temperature:660 oC,cathode current density:9.5 A/cm2 and electrolysis time of 40 min.The current efficiency reached 77.3%.X-ray diffraction(XRD) and scanning elec... 展开更多
关键词 Mg-Li-RE alloys ELECTRODEPOSITION current efficiency molten salt rare earths
下载PDF
Application of annexation principle to the study of thermodynamic properties of ternary molten salts CaCl_2-MgC_2-NaCl 被引量:8
15
作者 ZHANGJian 《Rare Metals》 SCIE EI CAS CSCD 2004年第3期209-213,共5页
Based on the practical basis of measured activities and phase diagrams aswell as in the light of the mass action law. the model of inseparable cations and anions of moltensalts and mattes, and the annexation principle... Based on the practical basis of measured activities and phase diagrams aswell as in the light of the mass action law. the model of inseparable cations and anions of moltensalts and mattes, and the annexation principle of two kinds of solutions in binary melts, thecalculating model of mass action concentrations of molten salts CaCl_2-MgCl_2-NaCl was formulated.The results of calculation not only agree with experimental values, but also obey the mass actionlaw, testifying that the model formulated can embody the structural characteristics of these ternarysalts, and that the model of inseparable cations and anions as well as the annexation principle oftwo kinds of solutions in binary melts are also applicable to these ternary salts. 展开更多
关键词 activity mass action law mass action concentration molten salts
下载PDF
Molten salt synthesis of porous carbon and its application in supercapacitors: A review 被引量:7
16
作者 Zhongya Pang Guangshi Li +4 位作者 Xiaolu Xiong Li Ji Qian Xu Xingli Zou Xionggang Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期622-640,I0016,共20页
Carbon materials have taken an important role in supercapacitor applications due to their outstanding features of large surface area,low price,and stable physicochemical properties.Considerable research efforts have b... Carbon materials have taken an important role in supercapacitor applications due to their outstanding features of large surface area,low price,and stable physicochemical properties.Considerable research efforts have been devoted to the development of novel synthesis strategy for the preparation of porous carbon materials in recent years.In particular,molten salt strategy represents an emerging and promising method,whereby it has shown great potential in achieving tailored production of porous carbon.It has been proved that the molten salt-assisted production of carbon via the direct carbonization of carbonaceous precursors is an effective approach.Furthermore,with the incorporation of electrochemical technology,molten salt synthesis of porous carbon has become flexible and diversiform.Here,this review focuses on the mainstream molten salt synthesis strategies for the production of porous carbon materials,which includes direct molten salt carbonization process,capture and electrochemical conversion of CO_(2)to value-added carbon,electrochemical exfoliation of graphite to graphene-based materials,and electrochemical etching of carbides to new-type carbide-derived carbon materials.The reaction mechanisms and recent advances for these strategies are reviewed and discussed systematically.The morphological and structural properties and capacitive performances of the obtained carbon materials are summarized to reveal their appealing points for supercapacitor applications.Moreover,the opportunities and challenges of the molten salt synthesis strategy for the preparation of carbon materials are also discussed in this review to provide inspiration to the future researches. 展开更多
关键词 molten salt synthesis Porous carbon CO_(2)conversion GRAPHENE Carbide-derived carbon
下载PDF
Preparation of Mg-Li alloys by electrolysis in molten salt at low temperature 被引量:5
17
作者 Mi Lin Zhang Yong De Yan Zhi Yao Hou Lu An Fan Zeng Chen Ding Xiang Tang 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第3期329-332,共4页
A new technology for preparation of low cost Mg-Li alloys was studied. The alloys were prepared by electrolysis in molten LiCl-KCl (weight ratio is 1:1) electrolyte with Mg rod severing as the consumed cathode. Mai... A new technology for preparation of low cost Mg-Li alloys was studied. The alloys were prepared by electrolysis in molten LiCl-KCl (weight ratio is 1:1) electrolyte with Mg rod severing as the consumed cathode. Main factors that affect current efficiency were investigated, and optimal electrolysis parameters were obtained. Mg-Li alloys with low lithium Content (about 25%) were prepared by the unique method of a higher post-thermal treatment temperature after electrolysis at low temperature. The results showed that the electrolysis can be carried out at low temperature, which resulted in reducing preparation cost due to energy saving. The new technology for the oreoaration of Mg-Li alloy by electrolysis in molten salt was laroved to be feasible. 展开更多
关键词 Mg-Li alloys molten salt electrolysis Low temperature Current efficiency
下载PDF
Electrical conductivity optimization of the Na3AlF6–Al2O3–Sm2O3 molten salts system for Al–Sm intermediate binary alloy production 被引量:4
18
作者 Chun-fa Liao Yun-fen Jiao +3 位作者 Xu Wang Bo-qing Cai Qiang-chao Sun Hao Tang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第9期1034-1042,共9页
Metal Sm has been widely used in making Al–Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective ... Metal Sm has been widely used in making Al–Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al–Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant(CVCC) technique was used to measure the conductivity for the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3electrolysis medium in the temperature range from 905 to 1055°C. The temperature(t) and the addition of Al2O3(W(Al2O3)), Sm2O3(W(Sm2O3)), and a combination of Al2O3and Sm2O3into the basic fluoride system were examined with respect to their effects on the conductivity(κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature(t) and decreases with the addition of Al2O3or Sm2O3or both. We concluded that the optimal operation conditions for Al–Sm intermediate alloy production in the Na3AlF6–AlF3–LiF–MgF2–Al2O3–Sm2O3system are W(Al2O3) + W(Sm2O3) = 3wt%, W(Al2O3):W(Sm2O3) = 7:3, and a temperature of 965 to 995°C, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption. 展开更多
关键词 aluminium oxide samarium oxide molten salt electrical conductivity regression analysis Al–Sm intermediate alloy
下载PDF
Interactions of molten salts with cathode products in the FFC Cambridge Process 被引量:4
19
作者 George Z.Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第12期1572-1587,共16页
Molten salts play multiple important roles in the electrolysis of solid metal compounds,particularly oxides and sulfides,for the extraction of metals or alloys.Some of these roles are positive in assisting the extract... Molten salts play multiple important roles in the electrolysis of solid metal compounds,particularly oxides and sulfides,for the extraction of metals or alloys.Some of these roles are positive in assisting the extraction of metals,such as dissolving the oxide or sulfide anions,and transporting them to the anode for discharging,and offering the high temperature to lower the kinetic barrier to break the metal-oxygen or metal-sulfur bond.However,molten salts also have unfavorable effects,including electronic conductivity and significant capability of dissolving oxygen and carbon dioxide gases.In addition,although molten salts are relatively simple in terms of composition,physical properties,and decomposition reactions at inert electrodes,in comparison with aqueous electrolytes,the high temperatures of molten salts may promote unwanted electrode-electrolyte interactions.This article reviews briefly and selectively the research and development of the F ray-F arthing-Chen(FFC)Cambridge Process in the past two decades,focusing on observations,understanding,and solutions of various interactions between molten salts and cathodes at different reduction states,including perovskitization,non-wetting of molten salts on pure metals,carbon contamination of products,formation of oxychlorides and calcium intermetallic compounds,and oxygen transfer from the air to the cathode product mediated by oxide anions in the molten salt. 展开更多
关键词 FFC Cambridge Process molten salts ELECTROLYSIS extraction OXIDES sulfides metals alloys reaction mechanisms
下载PDF
Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis 被引量:5
20
作者 Shi-yuan Liu Yu-lan Zhen +2 位作者 Xiao-bo He Li-jun Wang Kuo-chih Chou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第12期1678-1686,共9页
Tailings from the vanadium extraction process are discarded each year as waste,which contain approximately 30 wt%of Fe.In our previous work,we extracted Fe and Mn from vanadium slag,and Fe and Mn existed in the form o... Tailings from the vanadium extraction process are discarded each year as waste,which contain approximately 30 wt%of Fe.In our previous work,we extracted Fe and Mn from vanadium slag,and Fe and Mn existed in the form of FeCl_(2) and MnCl_(2) after chlorination by NH_(4) Cl to achieve effective and green usage of waste containing Fe and Mn.In this work,square wave voltammetry(SWV)and cyclic voltammetry(CV)were applied to investigate the electrochemical behaviors of Fe^(2+)and Mn^(2+)in Na Cl-KCl melt at 800℃.The reduction processes of Fe^(2+)and Mn^(2+)were found to involve one step.The diffusion coefficients of FeCl_(2) and Mn Cl_(2) in molten salt of eutectic mixtures Na Cl-KCl molten salt were measured.The electrodeposition of Fe and Mn were performed using two electrodes at a constant cell voltage.The Mn/Fe mass ratio of the electrodeposited product in Na Cl-KCl-2.13 wt%FeCl_(2)-1.07 wt%Mn Cl_(2) was 0.0625 at 2.3 V.After the electrolysis of NaCl-KCl-2.13 wt%Fe Cl_(2)-1.07 wt%MnCl_(2) melted at 2.3 V,the electrolysis was again started under 3.0 V and the Mn/Fe mass ratio of the electrodeposited product was 36.4.This process provides a novel method to effectively separate Fe and Mn from simulated chlorinated vanadium slag. 展开更多
关键词 vanadium slag molten salt electrolysis SEPARATION electrochemical analysis
下载PDF
上一页 1 2 162 下一页 到第
使用帮助 返回顶部