期刊文献+
共找到4,167篇文章
< 1 2 209 >
每页显示 20 50 100
Growth kinetics of titanium carbide coating by molten salt synthesis process on graphite sheet surface
1
作者 Xiaoyu Shi Chongxiao Guo +4 位作者 Jiamiao Ni Songsong Yao Liqiang Wang Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1858-1864,共7页
The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kine... The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications. 展开更多
关键词 titanium carbide GRAPHITE molten salt kinetic analysis
下载PDF
Molten Salt-Shielded Synthesis(MS^(3))of MXenes in Air 被引量:1
2
作者 Jinjin Chen Qianqian Jin +7 位作者 Youbing Li Hui Shao Pengcheng Liu Ying Liu Pierre-Louis Taberna Qing Huang Zifeng Lin Patrice Simon 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期159-164,共6页
MXenes are two-dimensional transition metal carbides and/or nitrides with unique physiochemical properties and have attracted extensive interest in numerous fields.However,current MXene synthesis methods are limited b... MXenes are two-dimensional transition metal carbides and/or nitrides with unique physiochemical properties and have attracted extensive interest in numerous fields.However,current MXene synthesis methods are limited by hazardous synthesis conditions,high production costs,or difficulty in largescale production.Therefore,a general,safe,cost-effective,and scalable synthesis method for MXenes is crucial.Here,we report the fast synthesis of MXenes in the open air using a molten salt-shielded synthesis(MS^(3))method,which uses Lewis-acid salts as etchants and a low-melting-point eutectic salt mixture as the reaction medium and shield to prevent MXene oxidation at high temperatures.Carbide and nitride MXenes,including Ti_(3)C_(2)T_(x),Ti_(2)CT_(x),Ti_(3)CNT_(x),and Ti_(4)N_(3)T_(x),were successfully synthesized using the MS^(3) method.We also present the flexibility of the MS^(3) method by scaling the etching process to large batches of 20 and 60 g of Ti_(3)AlC_(2) MAX precursor in one pot.When used as negative electrodes,the prepared MS^(3)-MXenes delivered excellent electrochemical properties for high-rate Li-ion storage. 展开更多
关键词 carbides lithium-ion storage molten salt synthesis MXene nitrides
下载PDF
Advances in Molten Salt Synthesis of Non-oxide Materials
3
作者 Shaolong Li Jianxun Song +3 位作者 Yusi Che Shuqiang Jiao Jilin He Bin Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期239-251,共13页
The properties of non-oxide materials are continuously revealed,and their applications in the fields of ceramics,energy,and catalysis are increasingly extensive.Regardless of the traditional binary materials or the MA... The properties of non-oxide materials are continuously revealed,and their applications in the fields of ceramics,energy,and catalysis are increasingly extensive.Regardless of the traditional binary materials or the MAX phases,the preparation methods,which are environmentally friendly,efficient,economical,and easy to scale-up,have always been the focus of attention.Molten salt synthesis has demonstrated unparalleled advantages in achieving non-oxide materials.In addition,with the development of the process in molten salt synthesis,it also shows great potential in scale-up production.In this review,the recent progress of molten salt synthesis in the preparation of binary non-oxide and MAX phase is reviewed,as well as some novel processes.The reaction mechanisms and the influence of synthetic conditions for certain materials are discussed in detail.The paper is finalized with the discussion of the application prospect and future research trends of molten salt synthesis in non-oxide materials. 展开更多
关键词 MAX phases molten salt NANOSTRUCTURE synthesis
下载PDF
Molten salt synthesis,morphology modulation,and lithiation mechanism of high entropy oxide for robust lithium storage
4
作者 Xuefeng Liu Honghong Wang +5 位作者 Long Dong Kezhuo Li Haijun Zhang Quanli Jia Shaowei Zhang Wen Lei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期536-545,I0011,共11页
High entropy oxides(HEOs)with ideal element tunability and enticing entropy-driven stability have exhibited unprecedented application potential in electrochemical lithium storage.However,the general control of dimensi... High entropy oxides(HEOs)with ideal element tunability and enticing entropy-driven stability have exhibited unprecedented application potential in electrochemical lithium storage.However,the general control of dimension and morphology remains a major challenge.Here,scalable HEO morphology modulation is implemented through a salt-assisted strategy,which is achieved by regulating the solubility of reactants and the selective adsorption of salt ions on specific crystal planes.The electrochemical properties,lithiation mechanism,and structure evolution of composition-and morphology-dependent HEO anode are examined in detail.More importantly,the potential advantages of HEOs as electrode materials are evaluated from both theoretical and experimental aspects.Benefiting from the high oxygen vacancy concentration,narrow band gap,and structure durability induced by the multi-element synergy,HEO anode delivers desirable reversible capacity and reaction kinetics.In particular,Mg is evidenced to serve as a structural sustainer that significantly inhibits the volume expansion and retains the rock salt lattice.These new perspectives are expected to open a window of opportunity to compositionally/morphologi cally engineer high-performance HEO electrodes. 展开更多
关键词 High-entropy oxide Lithium-ion battery anode molten salt Morphology modulation Structure stability
下载PDF
Dynamic simulation analysis of molten salt reactor-coupled air-steam combined cycle power generation system
5
作者 Jing-Lei Huang Guo-Bin Jia +3 位作者 Li-Feng Han Wen-Qian Liu Li Huang Zheng-Han Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期222-233,共12页
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol... A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability. 展开更多
关键词 molten salt reactor Combined cycle Dynamic characteristic CONTROL
下载PDF
Etching Mechanism of Ti_(3)C_(2)Cl_(2) MXene Phases by CuCl_(2)-Lewis Molten Salt Method
6
作者 严明 ZHU Yu +5 位作者 HUANG Jiangtao CHEN Haoyu DENG Yuxiao CHEN Yanlin 王娟 Jan-Michael Albina 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期863-868,共6页
We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it ... We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it forms an intermediate product Ti_(3)CuC_(2),and then reacts with Ti_(3)CuC_(2)to obtain Ti_(3)C_(2)Cl_(2).The reaction of Ti_(3)AlC_(2)and CuCl_(2)at a temperature of 800℃for 2 h to obtain Ti_(3)C_(2)Cl_(2)with an optimal lamellar structure is shown in SEM results.The pseudopotential plane-wave(PP-PW)method is used to calculate on the electronic structure.The etching mechanism is investigated by the total energies of each substance.The chemical reaction of Ti_(3)AlC_(2)and CuCl_(2)will first become Ti_(3)CuC_(2)and Cu,and then become Ti_(3)C_(2)Cl_(2)during the Lewis acid etching process,which are consistent with the experimental results. 展开更多
关键词 molten salt method CuCl_(2) MXene first-principles calculations etching mechanism
下载PDF
Preliminary safety analysis for heavy water-moderated molten salt reactor
7
作者 Gao-Ang Wen Jian-Hui Wu +3 位作者 Chun-Yan Zou Xiang-Zhou Cai Jin-Gen Chen Man Bao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第6期202-217,共16页
The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel.... The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel.Issues arising from graphite in traditional molten salt reactors,including the positive temperature coefficient and management of highly radio-active spent graphite waste,can be addressed using the HWMSR.Until now,research on the HWMSR has been centered on the core design and nuclear fuel cycle to explore the viability of the HWMSR and its advantages in fuel utilization.However,the core safety of the HWMSR has not been extensively studied.Therefore,we evaluate typical accidents in a small modular HWMSR,including fuel salt inlet temperature overcooling and overheating accidents,fuel salt inlet flow rate decrease,heavy water inlet temperature overcooling accidents,and heavy water inlet mass flow rate decrease accidents,based on a neutronics and thermal-hydraulics coupled code.The results demonstrated that the core maintained safety during the investigated accidents. 展开更多
关键词 Heavy water-moderated molten salt reactor Neutronics and thermal-hydraulics coupling Transient analysis Accident analysis
下载PDF
Plutonium utilization in a small modular molten-salt reactor based on a batch fuel reprocessing scheme
8
作者 Xue-Chao Zhao Rui Yan +4 位作者 Gui-Feng Zhu Ya-Fen Liu Jian Guo Xiang-Zhou Cai Yang Zou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期15-28,共14页
A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at th... A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at the current stage,thus it is difficult for MSR to achieve a pure thorium-uranium fuel cycle.Therefore,using plutonium or enriched uranium as the initial fuel for MSR is more practical.In this study,we aim to verify the feasibility of a small modular MSR that utilizes plutonium as the starting fuel(SM-MSR-Pu),and highlight its advantages and disadvantages.First,the structural design and fuel management scheme of the SM-MSR-Pu were presented.Second,the neutronic characteristics,such as the graphite-irradiation lifetime,burn-up performance,and coefficient of temperature reactivity were calculated to analyze the physical characteristics of the SM-MSR-Pu.The results indicate that plutonium is a feasible and advantageous starting fuel for a SM-MSR;however,there are certain shortcomings that need to be solved.In a 250 MWth SM-MSR-Pu,approximately 288.64 kg^(233)U of plutonium with a purity of greater than 90% is produced while 978.00 kg is burned every ten years.The temperature reactivity coefficient decreases from -4.0 to -6.5 pcm K^(-1) over the 50-year operating time,which ensures a long-term safe operation.However,the amount of plutonium and accumulation of minor actinides(MAs)would increase as the burn-up time increases,and the annual production and purity of^(233)U will decrease.To achieve an optimal burn-up performance,setting the entire operation time to 30 years is advisable.Regardless,more than 3600 kg of plutonium eventually accumulate in the core.Further research is required to effectively utilize this accumulated plutonium. 展开更多
关键词 molten salt fuel Plutonium utilization ^(233)U TRUs mole fraction Temperature feedback coefficient
下载PDF
Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts 被引量:2
9
作者 Xuan Gao Zhihui Li +2 位作者 Dongsheng Zhang Xinqiang Zhao Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期310-316,共7页
2,5-Dicyanofuran(DCF)is an important biomass-derived platform compound primarily used to prepare bio-based adiponitrile,which is the key precursor for the synthesis of nylon 66 and 1,6-hexanediisocyanate(HDI).In this ... 2,5-Dicyanofuran(DCF)is an important biomass-derived platform compound primarily used to prepare bio-based adiponitrile,which is the key precursor for the synthesis of nylon 66 and 1,6-hexanediisocyanate(HDI).In this study,one-pot,green and safe synthesis of DCF from 2,5-diformylfuran(DFF)and hydroxylamine ionic liquid salts was proposed.Eco-friendly hydroxylamine ionic liquid salts were used as the nitrogen source.Ionic liquid exhibited three-fold function of cosolvent,catalysis and phase separation.The conversion of DFF and yield of DCF reached 100%under the following optimum reaction conditions:temperature of 120℃ for 70 min,volume ratio of paraxylene:[HSO_(3)-b-Py]HSO4 of 2:1,and molar ratio of DFF:(NH_(2)OH)_(2)[HSO_(3)-b-Py]HSO4 of 1:1.5.The reaction mechanism for the synthesis of DCF was proposed,and the kinetic model was established.The reaction order with respect to DFF and intermediate product 2,5-diformylfuran dioxime(DFFD)was 1.06 and 0.16,and the reaction activation energy was 64.07 kJ·mol^(-1) and 59.37 kJ·mol^(-1) respectively.After the reaction,the ionic liquid was easy to separate,recover and recycle. 展开更多
关键词 2 5-Dicyanofuran Hydroxylamine ionic liquid salts Green synthesis KINETICS
下载PDF
CeO_2 as the Oxygen Carrier for Partial Oxidation of Methane to Synthesis Gas in Molten Salts: Thermodynamic Analysis and Experimental Investigation 被引量:14
10
作者 Yonggang Wei Hua Wang Fang He Xianquan Ao Chiyuan Zhang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第1期6-11,共6页
A new technique -- the direct partial oxidation of methane to synthesis gas using lattice oxygen in molten salts medium has been introduced. Using CeO2 as the oxygen carrier, thermodynamic data were calculated in the ... A new technique -- the direct partial oxidation of methane to synthesis gas using lattice oxygen in molten salts medium has been introduced. Using CeO2 as the oxygen carrier, thermodynamic data were calculated in the reaction process, and the results indicated that direct partial oxidation of methane to synthesis gas using lattice oxygen of cerium oxide is feasible in theory. In a stainless steel reactor, the effects of temperature and varying amounts of γ-Al2O3 supported CeO2 on cn4 conversion, H2 and CO selectivity, were investigated, respectively. The results show that 10% CeO2/γ-Al2O3 has the maximal reaction activity at a temperature of 865 ℃ and above, the H2/CO ratio in the gas that has been produced reaches 2 and the CH4 conversion, H2 and CO selectivity reached the following percentages: i.e. 61%, 89%, and 91% at 870 ℃, respectively. In addition, increase of reaction temperature is favorable for the partial oxidation of methane. 展开更多
关键词 partial oxidation METHANE cerium oxide synthesis gas molten salt
下载PDF
Electrochemical synthesis of ammonia in molten salts 被引量:6
11
作者 Jiarong Yang Wei Weng Wei Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期195-207,共13页
Ammonia is important feedstock for both fertilizer production and carbon-free liquid fuel.Many techniques for ammonia formation have been developed,hoping to replace the industrial energy-intensive Haber-Bosch route.E... Ammonia is important feedstock for both fertilizer production and carbon-free liquid fuel.Many techniques for ammonia formation have been developed,hoping to replace the industrial energy-intensive Haber-Bosch route.Electrochemical synthesis of ammonia in molten salts is one promising alternative method due to the strong solubility of N3- ions,a wide potential window of molten salt electrolytes and tunable electrode reactions.Generally,electrochemical synthesis of ammonia in molten salts begins with the electro-cleavage of N2/hydrogen sources on electrode surfaces,followed by diffusion of N3^-/H^+-containing ions towards each other for NH3 formation.Therefore,the hydrogen sources and molten salt composition will greatly affect the reactions on electrodes and ions diffusion in electrolytes,being critical factors determining the faradaic efficiency and formation rate for ammonia synthesis.This report summarizes the selection criteria for hydrogen sources,the reaction characteristics in various molten salt systems,and the preliminary explorations on the scaling-up synthesis of ammonia in molten salt.The formation rate and faradaic efficiency for ammonia synthesis are discussed in detail based on different hydrogen sources,various molten salt systems,changed electrolysis conditions as well as diverse catalysts.Electrochemical synthesis of ammonia might be further enhanced by optimizing the molten salt composition,using electrocatalysts with well-defined composition and microstructure,and innovation of novel reaction mechanism. 展开更多
关键词 ELECTROCHEMICAL AMMONIA synthesis molten salt ELECTROLYSIS N2 reduction Hydrogen source
下载PDF
Molten salt synthesis of porous carbon and its application in supercapacitors: A review 被引量:7
12
作者 Zhongya Pang Guangshi Li +4 位作者 Xiaolu Xiong Li Ji Qian Xu Xingli Zou Xionggang Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期622-640,I0016,共20页
Carbon materials have taken an important role in supercapacitor applications due to their outstanding features of large surface area,low price,and stable physicochemical properties.Considerable research efforts have b... Carbon materials have taken an important role in supercapacitor applications due to their outstanding features of large surface area,low price,and stable physicochemical properties.Considerable research efforts have been devoted to the development of novel synthesis strategy for the preparation of porous carbon materials in recent years.In particular,molten salt strategy represents an emerging and promising method,whereby it has shown great potential in achieving tailored production of porous carbon.It has been proved that the molten salt-assisted production of carbon via the direct carbonization of carbonaceous precursors is an effective approach.Furthermore,with the incorporation of electrochemical technology,molten salt synthesis of porous carbon has become flexible and diversiform.Here,this review focuses on the mainstream molten salt synthesis strategies for the production of porous carbon materials,which includes direct molten salt carbonization process,capture and electrochemical conversion of CO_(2)to value-added carbon,electrochemical exfoliation of graphite to graphene-based materials,and electrochemical etching of carbides to new-type carbide-derived carbon materials.The reaction mechanisms and recent advances for these strategies are reviewed and discussed systematically.The morphological and structural properties and capacitive performances of the obtained carbon materials are summarized to reveal their appealing points for supercapacitor applications.Moreover,the opportunities and challenges of the molten salt synthesis strategy for the preparation of carbon materials are also discussed in this review to provide inspiration to the future researches. 展开更多
关键词 molten salt synthesis Porous carbon CO_(2)conversion GRAPHENE Carbide-derived carbon
下载PDF
Molten salt synthesis of mullite nanowhiskers using different silica sources 被引量:2
13
作者 Tao Yang Peng-long Qiu +3 位作者 Mei Zhang Kuo-Chih Chou Xin-mei Hou Bai-jun Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第8期884-891,共8页
Mullite nanowhiskers with Al-rich structure were prepared by molten salt synthesis at 1000°C for 3 h in air using silica, amorphous silica, and ultrafine silica as the silica sources. The phase and morphology of ... Mullite nanowhiskers with Al-rich structure were prepared by molten salt synthesis at 1000°C for 3 h in air using silica, amorphous silica, and ultrafine silica as the silica sources. The phase and morphology of the synthesized products were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy. A thermogravimetric and differential thermal analysis was carried out to determine the reaction mechanism. The results reveal that the silica sources play an important role in determining the morphology of the obtained mullite nanowhiskers. Clusters and disordered arrangements are obtained using common silica and amorphous silica, respectively, whereas the use of ultrafine silica leads to highly ordered mullite nanowhiskers that are 80-120 nm in diameter and 20-30 μm in length. Considering the growth mechanisms, mullite nanowhiskers in the forms of clusters and highly ordered arrangements can be attributed to heterogeneous nucleation, whereas disordered mullite nanowhiskers are obtained by homogenous nucleation. 展开更多
关键词 MULLITE NANOWHISKERS MORPHOLOGY SILICA molten salt
下载PDF
The Synthesis of TiNi and Composite Particles in Molten Salts 被引量:2
14
作者 Yang Ruisong Cui Lishan Zheng Yanjun 《Petroleum Science》 SCIE CAS CSCD 2005年第3期37-39,共3页
A novel process for synthesizing TiNi and TiNi/TiC particles, called the high-temperature salt-melting method, is discussed in this paper. So far as this method is concerned, the molten salts are a reaction medium tha... A novel process for synthesizing TiNi and TiNi/TiC particles, called the high-temperature salt-melting method, is discussed in this paper. So far as this method is concerned, the molten salts are a reaction medium that does not take part in the chemical reaction but can be easily dissolved by water washing. With this method, TiNi shape memory alloy and TiNi/TiC composite particles were prepared in molten salts at 680-850℃. TiNi particles, ranging from 100 nm to several microns in diameter, are obtained and the reverse martensitic transformation is confirmed in these particles by the differential scanning calorimetry (DSC). The reaction temperature and the holding time have no significant influence on the particle size, morphology or the reverse martensitic transformation characteristics. In the molten salts, the released heat of the chemical reaction causes the local temperature to rise quickly, which is the key to obtaining the desired particulate composite. 展开更多
关键词 TiC particles TiNi particles molten salts martensitic transformation
下载PDF
Molten Salt Synthesis of Ba(Mg_(1/3)Nb_(2/3))O_3 Powder 被引量:2
15
作者 田中青 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期17-19,共3页
The single-phase Ba(Mg_(1/3)Nb_(2/3))O_3(BMN) powder was successfully prepared by the KCl molten salt synthesis(MSS) method.The temperature for single-phase BMN powders by MSS was about 400℃ lower than that by the so... The single-phase Ba(Mg_(1/3)Nb_(2/3))O_3(BMN) powder was successfully prepared by the KCl molten salt synthesis(MSS) method.The temperature for single-phase BMN powders by MSS was about 400℃ lower than that by the solid-phase method.The average particle size(APS) was about 0.91μm at 900℃ and increased with increasing synthesis temperature.Based on the APS,the activation energy for particle growth in the MSS,whose value was 64.1kJmol^(-1),was attained.The sinterability of the powder prepared by MSS method was better than that prepared by solid-phase method. 展开更多
关键词 Ba(Mg_(1/3)Nb_(2/3))O_3 molten salt synthesis POWDERS microwave dielectric ceramics
下载PDF
Molten salt synthesis of α-MnO_(2)/Mn_(2)O_(3) nanocomposite as a high-performance cathode material for aqueous zinc-ion batteries 被引量:2
16
作者 Aixiang Huang Weijun Zhou +3 位作者 Anran Wang Minfeng Chen Qinghua Tian Jizhang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期475-481,共7页
Thanks to low cost,high safety,and large energy density,aqueous zinc-ion batteries have attracted tremendous interest worldwide.However,it remains a challenge to develop high-performance cathode materials with an appr... Thanks to low cost,high safety,and large energy density,aqueous zinc-ion batteries have attracted tremendous interest worldwide.However,it remains a challenge to develop high-performance cathode materials with an appropriate method that is easy to realize massive production.Herein,we use a molten salt method to synthesize nanostructured manganese oxides.The crystalline phases of the manganese oxides can be tuned by changing the amount of reduced graphene oxide added to the reactant mixture.It is found that the α-MnO_(2)/Mn_(2)O_(3) nanocomposite with the largest mass ratio of Mn_(2)O_(3) delivers the best electrochemical performances among all the products.And its rate capability and cyclability can be significantly improved by modifying the Zn anode with carbon black coating and nanocellulose binder.In this situation,the nanocomposite can deliver high discharging capacities of 322.1 and 213.6 mAh g^(-1) at 0.2 and 3 Ag^(-1),respectively.After 1000 cycles,it can retain 86.2% of the capacity at the 2 nd cycle.Thus,this nanocomposite holds great promise for practical applications. 展开更多
关键词 Manganese oxides molten salt synthesis Nanostructured composites Aqueous batteries Zinc ion storage
下载PDF
Molten salt synthesis and supercapacitor properties of oxygen-vacancy LaMnO3-δ 被引量:1
17
作者 Ya-Li Song Zi-Chang Wang +6 位作者 Yong-De Yan Mi-Lin Zhang Gui-Ling Wang Tai-Qi Yin Yun Xue Fan Gao Min Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期173-181,共9页
Due to the unique structure of perovskite materials,their capacitance can be improved by introducing oxygen vacancy.In this paper,the LaMnO3-δ material containing oxygen vacancy was synthesized by molten salt method ... Due to the unique structure of perovskite materials,their capacitance can be improved by introducing oxygen vacancy.In this paper,the LaMnO3-δ material containing oxygen vacancy was synthesized by molten salt method in KNO3-NaNO3-NaNO2 melt.The La-Mn-O crystal grows gradually in molten salt with the increase of temperature.It was confirmed that LaMnO3-δ with perovskite structure and incomplete oxygen content were synthesized by molten salt method and presented a three-dimensional shape.LaMnO3-δ stores energy by redox reaction and adsorption of OH-in electrolyte simultaneously.In comparison with the stoichiometric LaMnO3 prepared by the sol-gel method,LaMnO3-δ prepared by molten salt method proffered higher capacitance and better performance.The galvanostatic charge-discharge curve showed specific capacitance of 973.5 F/g under current density of 1 A/g in 6 M KOH.The capacitance of LaMn03-δ was 82.7%under condition of 5 A/g compared with the capacitance at the current of 1A/g,and the specific capacitances of 648.0 and 310.0 F/g were obtained after 2000 and 5000 cycles of galvanostatic charging-discharging,respectively.Molten salt synthesis method is relatively simple and suitable for industrial scale,presenting a promising prospect in the synthesis of perovskite oxide materials. 展开更多
关键词 LaMnO3-δ Perovskite oxide KNO3-NaNO3-NaNO2 MELT SUPERCAPACITOR molten salt synthesis
下载PDF
Molten-salt synthesis and composition-dependent luminescent properties of barium tungsto-molybdate-based solid solution phosphors 被引量:1
18
作者 贺香红 叶招莲 +2 位作者 关明云 连宁 孙建华 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第2期482-488,共7页
Pr^(3+)-activated barium tungsto-molybdate solid solution phosphor Ba(Mo_(1-z)W_z)O_4:Pr^(3+)is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated oct... Pr^(3+)-activated barium tungsto-molybdate solid solution phosphor Ba(Mo_(1-z)W_z)O_4:Pr^(3+)is successfully fabricated via a facile molten-salt approach. The as-synthesized microcrystal is of truncated octahedron and exhibits deep-red-emitting upon blue light excitation. Powder x-ray diffraction and Raman spectroscopy techniques are utilized to investigate the formation of solid solution phosphor. The luminescence behaviors depend on the resulting composition of the microcrystals with fixed Pr^(3+)-doping concentration, while the host lattices remain in a scheelite structure. The forming solid solution via the substitution of [WO_4] for [MoO_4] can significantly enhance its luminescence, which may be due to the fact that Ba(Mo_(1-z)W_z)O_4:Pr^(3+)owns well-defined facets and uniform morphologies. Owing to its properties of high phase purity,well-defined facets, highly uniform morphologies, exceptional chemical and thermal stabilities, and stronger emission intensity, the resulting solid solution phosphor is expected to find potential applications in phosphor-converted white lightemitting diodes(LEDs). 展开更多
关键词 molten-salt barium tungsto-molybdate microcrystals solid solution deep-red-emitting
下载PDF
Synthesis of TiNi/Ti_2Ni Composite Particles in Molten Salts
19
作者 YANG Rui-song CUI Li-shan ZHENG Yan-jun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期139-141,共3页
A new process of synthesizing TiNi/Ti2Ni composite particles, high temperature molten salts method, is introduced. This method uses molten salts as a reaction medium that does not take part in the chemical reaction an... A new process of synthesizing TiNi/Ti2Ni composite particles, high temperature molten salts method, is introduced. This method uses molten salts as a reaction medium that does not take part in the chemical reaction and can be easily dissolved in rinsing water. According this method, the composite particles were prepared in molten salts at 700 ℃-900 ℃. By means of differential scanning calorimetry (DSC), the reversible martensific transformation of TiNi particles in these composite particles was contemned. 展开更多
关键词 TiNi oarticles martensitic transformation molten salts
下载PDF
Molten salt-assisted synthesis of bulk CoOOH as a water oxidation catalyst
20
作者 Sanzhao Song Hongliang Bao +6 位作者 Xiao Lin Xian-Long Du Jing Zhou Linjuan Zhang Ning Chen Jun Hu Jian-Qiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期5-10,共6页
Different sizes of layered CoOOH were synthesized by the molten-salt-assisted method at different temperatures.X-ray diffraction and scanning electron microscope studies reveal that CoOOH grew at(003)with increasing t... Different sizes of layered CoOOH were synthesized by the molten-salt-assisted method at different temperatures.X-ray diffraction and scanning electron microscope studies reveal that CoOOH grew at(003)with increasing temperature,and its size can reach dozens of microns.X-ray absorption near edge structure and XPS studies demonstrate that the Co valence state of CoOOH-750 is trivalent,and X-ray Absorption Fine Structure shows that it had a higher symmetry and lower disorder degree,indicating that CoOOH-750 has higher crystallinity and Co3+.The results of electrochemical tests show that CoOOH-750 exhibited the best oxygen-evolution-reaction(OER)catalytic activity. 展开更多
关键词 molten-salt-assisted synthesis COOOH CRYSTALLINITY Water oxidation CATALYST
下载PDF
上一页 1 2 209 下一页 到第
使用帮助 返回顶部