期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Electrochemical manufacturing of nanocarbons from carbon dioxide in molten alkali metal carbonate salts: roles of alkali metal cations 被引量:3
1
作者 Happiness V. Ijije George Z. Chen 《Advances in Manufacturing》 SCIE CAS CSCD 2016年第1期23-32,共10页
One simple and fast way to manufacture a useful product from CO2 is to capture the gas by, and then carry out electrolysis in molten alkali metal carbonates. Carbon electro-deposition in molten Li2CO3-Na2CO3- KaCO3 (... One simple and fast way to manufacture a useful product from CO2 is to capture the gas by, and then carry out electrolysis in molten alkali metal carbonates. Carbon electro-deposition in molten Li2CO3-Na2CO3- KaCO3 (molar ratio: 43.5:31.5:25.0) has been widely reported in literature. However, studies in each of the individual alkali metal carbonates either have received less attention or are simply lacking in literature. Electrochem- ical studies of these molten carbonates are important to understand their underlying processes and reactions during the electrolysis. In this work, cyclic voltammograms (CVs) were recorded in each of the above-mentioned molten alkali carbonate salts using a 0.25 mm diameter Pt wire working electrode. In molten Na2CO3 and K2CO3, the main cathodic reaction was likely the formation of alkali metal, while that in Li2CO3 was carbon deposition. The results also suggest that other competing reactions such as CO and alkali metal carbide formation are possible as well in dif- ferent molten salts. On the CVs, the anodic current peaks observed are mostly associated with the oxidation of cathodic products. Flake/ring/sheet-like structures and quasi-spherical particles were observed in the produced carbon. The morphology of the carbon contained both amorphous and graphitic structures, which varied with different electrolysis variables. 展开更多
关键词 Carbon capture and utilisation ELECTRO-DEPOSITION Cyclic voltammetry Nanocarbons moltensalts Alkali metal carbonates
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部