期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
LA-ICP-MS Zircon U-Pb Geochronology of the Fine-grained Granite and Molybdenite Re-Os Dating in the Wurinitu Molybdenum Deposit,Inner Mongolia,China 被引量:10
1
作者 Cui LIU Jinfu DENG +4 位作者 Weiqiong KONG Liquan XU Guochun ZHAO Zhaohua LUO Ning LI 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第5期1057-1066,共10页
The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite... The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin'aobao Formation.LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,one were formed at 181.7±7.4 Ma and the other at 133.6±3.3 Ma.The latter age is believed to be the formation age of the fine-grained granite,while the former may reflect the age of inherited zircons,based on the morphological study of the zircon and regional geological setting.The Re-Os model age of molybdenite is 142.2±2.5 Ma,which is older than the diagenetic age of the fine-grained granite.Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be nearly 133.6±3.3 Ma or slightly later,i.e.,Early Cretaceous.Combined with regional geological background research,it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt,belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk Sea. 展开更多
关键词 fine-grained granite LA-ICP-MS zircon U-Pb geochronology molybdenite re-os dating Wurinitu molybdenum deposit Inner Mongolia
下载PDF
U-Pb Zircon and Re-Os Molybdenite Geochronology of the W-Mo Mineralized Region of South Qinling, China, and their Tectonic Implications 被引量:3
2
作者 HAN Ke YANG Xingke +6 位作者 CHAO Huixia HE Hujun RUAN Shiqi GAO Yunfeng ZHANG Weisheng ZHU Wei JIN Gang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第2期500-516,共17页
A W-Mo mineralized region is located along the northern margin of the South Qinling tectonic belt of China. WMo mineralization occurs mainly in Cambrian–Ordovician clastic and carbonate rocks, and the ore bodies are ... A W-Mo mineralized region is located along the northern margin of the South Qinling tectonic belt of China. WMo mineralization occurs mainly in Cambrian–Ordovician clastic and carbonate rocks, and the ore bodies are structurally controlled by NW–SE-and NNE–SSW-striking faults. Evidence for magmatism in the area is widespread and is dominated by intermediate–felsic intrusives or apophyses, such as the Dongjiangkou, Yanzhiba, Lanbandeng, and Sihaiping granitic bodies. Quartz-vein-type mineralization and fault-controlled skarn-type mineralization dominate the ore systems, with additional enrichment in residual deposits. At present, there are few or insufficient studies on(1) the age of mineralization,(2) the relationship between intermediate–felsic granite and W-Mo mineralization,(3) the source of ore-forming materials, and(4) the metallogenic and tectonic setting of the mineralized area. In this paper, we present geochronology results for numerous intrusive granitic bodies in the South Qinling tectonic belt. U-Pb zircon geochronology of the Lanbandeng monzogranite and Wangjiaping biotite monzogranite yields ages of 222.7 ± 2.3 and 201.9 ± 1.8 Ma, respectively. In contrast to the Late Triassic age of the Lanbandeng monzogranite, the age of the newly discovered Wangjiaping biotite monzogranite places it at the Triassic–Jurassic boundary. Re-Os molybdenite geochronology on the Qipangou W-Mo deposit yielded a model age of 199.7 ± 3.9 Ma, indicating the deposit formed in the early Yanshanian period of the Early Jurassic. Granitoid intrusions in the mineralized area are characterized by composite granite bodies that crystallized at ca. 240–190 Ma. While there were multiple stages of intrusion, most occurred at 210–220 Ma, with waning magmatic activity at 200–190 Ma. The Re-Os age of molybdenite in the region is ca. 200–190 Ma, which may represent a newly discovered period of W-Mo metallogenesis that occurred during the final stages of magmatism. The heat associated with this magmatism drove ore formation and might have provided additional ore-forming components for metallogenesis(represented by the Wangjiaping biotite monzogranite). Ore materials in the mineralized area were derived from mixed crustal and mantle sources. Enrichment of the region occurred during intracontinental orogenesis in the late Indosinian–Yanshanian, subsequent to the main Indosinian collision. At this time, the tectonic environment was dominated by extension and strike-slip motion. 展开更多
关键词 U-Pb zircon geochronology re-os molybdenite geochronology tungsten-molybdenum mineralized area intracontinental orogeny South Qinling
下载PDF
New Discovery of Molybdenite in the Dongping Gold Deposit, Hebei Province, China and its Re-Os Geochronological Implications 被引量:5
3
作者 WANG Dazhao LIU Jiajun +3 位作者 ZHAI Degao ZHEN Shimin WANG Jiang YANG Xi'an 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第3期769-770,共2页
The Dongping gold deposit is located on the northern margin of the North China Craton,and is the largest alkaline pluton-related gold deposit in China(Bao et al.,2014),which is characterized by its large amounts of te... The Dongping gold deposit is located on the northern margin of the North China Craton,and is the largest alkaline pluton-related gold deposit in China(Bao et al.,2014),which is characterized by its large amounts of tellurides.The deposit is largely hosted in the Shuiquangou syenitic complex and consists of auriferous quartz veins and disseminated sulfide ores.It has been extensively studied since its discovery in the 1980s;however the geochronology and genesis of the deposit are still controversial.Nie(1998)considered that the deposit was formed in the Devonian. 展开更多
关键词 Gold DEPOSIT re-os geochronologICAL IMPLICATIONS
下载PDF
Re-Os Dating of Molybdenite from the Yaogangxian Tungsten Deposit,South China,and Its Geological Significance 被引量:9
4
作者 WANG Yonglei PEI Rongfu +4 位作者 LI Jinwen QU Wenjun LI Li WANG Haolin DU Andao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第4期820-825,共6页
The Yaogangxian tungsten deposit is located in the central part of the Nanling polymetailic metallogenic province. The orebodies occur as veins. Wolframite and molybdenite are the dominant ore minerals. Two samples we... The Yaogangxian tungsten deposit is located in the central part of the Nanling polymetailic metallogenic province. The orebodies occur as veins. Wolframite and molybdenite are the dominant ore minerals. Two samples were selected for molybdenite Re-Os dating in order to elucidate the timing of mineralization. Re-Os datings of molybdenite from quartz-woiframite veins and disseminated in granite yield ages of 153±7 Ma and 163.2±4.2 Ma respectively. The results indicate that the Yaogangxian tungsten deposit is the product of large-scale metallogenesis in the middle Yanshanian period in South China, and that the evolution from late magmatic to postmagmatic hypothermal mineralization occurred at about 10 Ma. The rhenium content of molybdenite in the Yaogangxian tungsten deposit suggests that the ore materials originated from the crust. 展开更多
关键词 re-os isotopes molybdenite tungsten deposit South China
下载PDF
LA-ICP-MS Zircon U-Pb Dating of Intermediate-Acidic Intrusive Rocks and Molybdenite Re-Os Dating from the Bangpu Mo (Cu) Deposit, Tibet and its Geological Implication 被引量:13
5
作者 WANG Liqiang CHEN Yuchuan +5 位作者 TANG Juxing LU Pengrui LUO Maocheng WANG Huan CHEN Wei LENG Qiufeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第5期1225-1240,共16页
The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipula... The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipulated in detail in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating method. The ages of biotite monzogranite that were formed before mineralization in the southwest of this mining district are 70±1 Ma (mean square of weighted deviates (MSWD) =9.5, n=8) and 60.60±0.31 Ma (MSWD=3.8, n=16), which belong to the late Cretaceous-early Paleocene in age. That means, they are products of an early tectonicmagmatic event of the collision between the Indian and Asian continentals. The ages of ore-bearing monzogranite porphyry and ore-bearing diorite porphyrite are 16.23±0.19 Ma (MSWD=2.0, n=26) and 15.16±0.09 Ma (MSWD=3.9, n=5) separately, which belong to the middle Miocene in age; namely, they are products of the Gangdese post-collision extensional stage when crust-mantle materials melted and mixed as well as magmatic intrusion simultaneously occurred. Some zircons with ages of 203.6±2.2 Ma (MSWD=1.18, n=7) were captured in the ore-bearing diorite porphyrite, which shows that there had been tectono-magmatic events in the late Triassic-early Jurassic. Molybdenum (copper) ore-bodies produced in the monzogranite porphyry and copper (molybdenum) ore-bodies produced in the diorite porphyrite are the main ore types in this ore deposit. The model ages of Re-Os isotopic dating for the 11 molybdenite are 13.97-15.84 Ma, while isochron ages are 14.09±0.49 Ma (MSWD=26). The isochron ages of seven molybdenite from molybdenum (copper) ore with monzogranite porphyry type are 14.11±0.31 Ma (MSWD=5.2). There is great error in the isochron ages of four molybdenite from copper (molybdenum) ore with diorite porphyrite type, and their weighted average model ages of 14.6±1.2 Ma (MSWD=41), which generally represent the mineralization age. The results about the Re-Os isotopic dating of molybdenite in the ore of different types have limited exactly that, the minerlazation age of this ore deposits is about 14.09 Ma, which belongs to the middle Miocene mineralization. The Bangpu deposit has a uniform metallogenic dynamics background with the porphyry type and skarn-type deposits such as Jiama, Qulong and others. 展开更多
关键词 LA-ICP-MS zircon U-Pb dating molybdenite re-os dating metallogenic dynamics background Bangpu TIBET
下载PDF
Re-Os geochronology of Cu and W-Mo deposits in the Balkhash metallogenic belt,Kazakhstan and its geological significance 被引量:10
6
作者 Xuanhua Chen Wenjun Qu +6 位作者 Shuqin Han Seitmuratova Eleonora Nong Yang Zhengle Chen Fagang Zeng Andao Du Zhihong Wang 《Geoscience Frontiers》 SCIE CAS 2010年第1期115-124,共10页
The Central Asian metallogenic domain (CAMD) is a multi-core metallogenic system controlled by boundary strike-slip fault systems. The Balkhash metallogenic belt in Kazakhstan, in which occur many large and super-la... The Central Asian metallogenic domain (CAMD) is a multi-core metallogenic system controlled by boundary strike-slip fault systems. The Balkhash metallogenic belt in Kazakhstan, in which occur many large and super-large porphyritic Cu--Mo deposits and some quartz vein- and greisen-type W-Mo deposits, is a well-known porphyritic Cu--Mo metallogenic belt in the CAMD. In this paper 11 molybdenite samples from the western segment of the Balkhash metallogenic belt are selected for Re--Os compositional analyses and Re--Os isotopic dating. Molybdenites from the Borly porphyry Cu deposit and the three quartz vein-greisen W--Mo deposits--East Kounrad, Akshatau and Zhanet--all have relatively high Re contents (2712--2772 μg/g for Borly and 2.267--31.50 μg/g for the other three W-Mo deposits), and lower common Os contents (0.670-2.696 ng/g for Borly and 0.0051--0.056 ng/g for the other three). The molybdenites from the Borly porphyry Cu--Mo deposit and the East Kounrad, Zhanet, and Akshatau quartz vein- and greisen-type W-Mo deposits give average model Re--Os ages of 315.9 Ma, 298.0 Ma, 295.0 Ma, and 289.3 Ma respectively. Meanwhile, molybde- nites from the East Kounrad, Zhanet, and Akshatan W-Mo deposits give a Re--Os isochron age of 297.9 Ma, with an MSWD value of 0.97. Re--Os dating of the molybdenites indicates that Cu-W-Mo metallogenesis in the western Balkhash metallogeuic belt occurred during Late Carboniferous to Early Permian (315.9--289.3 Ma), while the porphyry Cu--Mo deposits formed at ~316 Ma, and the quartz vein-greisen W--Mo deposits formed at ~298 Ma. The Re--Os model and isochron ages thus suggest that Late Carboniferous porphyry granitoid and pegmatite magmatism took place during the late Hercy- nian movement. Compared to the Junggar-East Tianshan porphyry Cu metallogenic belt in northwestern China, the formation of the Cu-Mo metallogenesis in the Balkhash rnetallogenic belt occurred between that of the Tuwu-Yandong in East Tianshan and the Baogutu porphyry Cu deposits in West Junggar. Collectively, the large-scale Late Carboniferous porphyry Cu-Mo metallogenesis in the Central Asian metallogenic domain is related to Hercynian tectono-magmatic activities. 展开更多
关键词 re-os geochronology Metallogenic age Porphyry Cu-Mo deposit Greisen W--Mo deposits Balkhash metallogenicbelt Kazakhstan
下载PDF
SHRIMP Zircon U-Pb and Molybdenite Re-Os Datings of the Superlarge Donggou Porphyry Molybdenum Deposit in the East Qinling,China,and Its Geological Implications 被引量:7
7
作者 YE Huishou MAO Jingwen +5 位作者 LI Yongfeng GUO Baojian ZHANG Changqing LIU Jun YAN Quanren LIU Guoyin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第1期134-145,共12页
Located in the eastern part of the East Qinling molybdenum belt, the Donggou deposit is a superlarge porphyry molybdenum deposit discovered in recent years. The authors performed highly precise dating of the mineraliz... Located in the eastern part of the East Qinling molybdenum belt, the Donggou deposit is a superlarge porphyry molybdenum deposit discovered in recent years. The authors performed highly precise dating of the mineralized porphyry and ores in the Donggou molybdenum deposit. A SHRIMP U-Pb zircon dating of the Donggou aluminous A-type granite-porphyry gave a rock-forming age of 112±1 Ma, and the ICP-MS Re-Os analyses of molybdenite from the molybdenum deposit yielded ReOs model ages ranging from 116.5±1.7 to 115.5±1.7 Ma for the deposit. The ages obtained by the two methods are quite close, suggesting that the rocks and ores formed approximately at the same time. The Donggou molybdenum deposit formed at least 20 Ma later than the Jinduicheng, Nannihu, Shangfanggou and Leimengou porphyry molybdenum deposits in the same molybdenum belt, implying that these deposits were formed in different tectonic settings. 展开更多
关键词 SHRIMP U-Pb zircon age aluminous A-type granite-porphyry molybdenite re-os age Donggou molybdenum deposit East Qinling
下载PDF
Late Jurassic Cu-Mo Mineralization at the Zhashui-Shanyang District,South Qinling,China:Constraints from Re-Os Molybdenite and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry U-Pb Zircon Dating 被引量:2
8
作者 LI Qiugen LIU Shuwen +4 位作者 WANG Zongqi WANG Dongsheng YAN Zhen YANG Kai WU Fenghui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第3期661-672,共12页
The Zhashui-Shanyang district is one of the most important sulfide deposits in the Qinling Orogen where the formation of porphyry-skarn Cu-Mo deposits has a close genetic link with the Yanshannian magmatism.Laser Abla... The Zhashui-Shanyang district is one of the most important sulfide deposits in the Qinling Orogen where the formation of porphyry-skarn Cu-Mo deposits has a close genetic link with the Yanshannian magmatism.Laser Ablation-Inductively Coupled Plasma Mass Spectrometry(LA-ICP-MS) U-Pb zircon dating of two granodiorite intrusions(Xiaohekou and Lengshuigou deposits)was investigated in the Zhashui-Shanyang district and the rock-forming ages obtained from 148.3±2.8 to 152.6±1.2 Ma,averaging 150.5 Ma,accompanied by a younger disturbance age of 144.3±1.7 Ma in the Lengshuigou intrusion,which is in excellent agreement with published sensitive high resolution ion micro-probe(SHRIMP)zircon date on the later monzodiorite porphyry phase in the Lenshuigou deposit.Two samples were selected for molybdenite ICP-MS Re-Os isotopic analyses from the Lengshuigou granodiorite porphyry,yielding Re-Os model ages from 149.2±2.7 Ma to 150.6±3.4 Ma, with a weighted mean age of 149.7±2.1 Ma.These mineralization ages overlap rock-forming ages of the host intrusions within the error range.This implies that the mineralization occurred in the Late Jurassic,which belongs to the tectonic phase B event of the Yanshan Movement,not Cretaceous as previously thought.Therefore,the Late Jurassic mineralization of the Zhashui-Shanyang district could be connected to the large-scale Yanshan molybdenum metallogenic period,the geodynamic regime of which is attributable to the far field response of convergence of surrounding plates,perhaps the approximately westward subduction of the Izanagi plate beneath the Eurasian continent. 展开更多
关键词 re-os isotope molybdenite zircon porphyry-skarn Cu-Mo deposit QINLING
下载PDF
Constraints of molybdenite Re-Os and scheelite Sm-Nd ages on mineralization time of the Kukaazi Pb-Zn-Cu-W deposit, Western Kunlun, NW China 被引量:3
9
作者 Chengbiao Leng Yuhui Wang +3 位作者 Xingchun Zhang Jianfeng Gao Wei Zhang Xinying Xu 《Acta Geochimica》 EI CAS CSCD 2018年第1期47-59,共13页
The Kukaazi Pb-Zn-Cu-W polymetallic deposit, located in the Western Kunlun orogenic belt, is a newly discovered skarn-type deposit. Ore bodies mainly occur in the forms of lenses and veins along beddings of the Mesopr... The Kukaazi Pb-Zn-Cu-W polymetallic deposit, located in the Western Kunlun orogenic belt, is a newly discovered skarn-type deposit. Ore bodies mainly occur in the forms of lenses and veins along beddings of the Mesoproterozoic metamorphic rocks. Three ore blocks, KⅠ,KⅡ, and KⅢ, have been outlined in different parts of the Kukaazi deposit in terms of mineral assemblages. The KⅠ ore block is mainly composed of chalcopyrite, scheelite,pyrrhotite, sphalerite, galena and minor pyrite, arsenopyrite,and molybdenite, whereas the other two ore blocks are made up of galena, sphalerite, magnetite and minor arsenopyrite and pyrite. In this study, we obtained a molybdenite isochron Re–Os age of 450.5 ± 6.4 Ma(2σ,MSWD = 0.057) and a scheelite Sm–Nd isochron age of 426 ± 59 Ma(2σ, MSWD = 0.49) for the KⅠ ore block.They are broadly comparable to the ages of granitoid in the region. Scheelite grains from the KⅠ ore block contain high abundances of rare earth elements(REE, 42.0–95.7 ppm)and are enriched in light REE compared to heavy REE, with negative Eu anomalies(δEu = 0.13–0.55). They display similar REE patterns and Sm/Nd ratios to those of the coeval granitoids in the region. Moreover, they also have similar Sr and Nd isotopes [ ^(87)Sr/ ^(86)Sr = 0.7107–0.7118;ε_(Nd)(t) =-4.1 to-4.0] to those of such granitoids, implying that the tungsten-bearing fluids in the Kukaazi deposit probably originate from the granitic magmas. Our results first defined that the Early Paleozoic granitoids could lead to economic Mo–W–(Cu) mineralization at some favorable districts in the Western Kunlun orogenic belt and could be prospecting exploration targets. 展开更多
关键词 molybdenite re-os Scheelite Sm–Nd REE Kukaazi Pb-Zn-Cu-W polymetallic deposit Western Kunlun orogenic belt
下载PDF
Metallogenesis and hydrothermal evolution of the Tonggou Cu deposit in the Eastern Tianshan:Evidence from fluid inclusions,H-O-S isotopes,and Re-Os geochronology 被引量:1
10
作者 Xue-bing Zhang Chuan Chen +2 位作者 Fang Xia Ling-ling Gao Hong-yan Quan 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第6期2301-2312,共12页
The Tonggou Cu polymetallic deposit in the Bogda Orogenic Belt,Eastern Tianshan shows evidence for three stages of hydrothermal mineralization:early pyrite veins(Stage 1),polymetallic sulfide±epidote-quartz(Stage... The Tonggou Cu polymetallic deposit in the Bogda Orogenic Belt,Eastern Tianshan shows evidence for three stages of hydrothermal mineralization:early pyrite veins(Stage 1),polymetallic sulfide±epidote-quartz(Stage 2),and late-stage pyrite-calcite veins(Stage 3).Fluid inclusion petrography and microthermometry analyses indicate that the liquid-rich aqueous inclusions(L),vapour-rich aqueous inclusions(V),and NaCl daughter mineral-bearing three phase inclusions(S)formed during the main stage of mineralization,and that the ore fluids represent high-temperature and high-salinity H20-NaCl hydrothermal fluids that underwent boiling.Stable isotope(H,O)data indicate that the ore fluids of the Tonggou deposit were originally derived from magmatic water in Stage 2 and subsequently mixed with local meteoric water during Stage 3.Sulphur isotope compositions(6.7‰to 10.9‰)are consistent with theδ^34 S values of pyrite from the Qijiaojing Formation sandstone,indicating the primary source of the sulphur ore.Furthermore,chalcopyrite grains separated from the chalcopyrite-rich ore samples yield an isochron age of 303±12 Ma(MSWD=1.2).These results indicate that the Tonggou deposit is a transition between high-sulfidation and porphyry deposits which formed in the Late Carboniferous.It also suggests an increased likelihood for the occurrence of Cu(Au,Mo)in the Bogda Orogenic Belt,especially at locations where the Cu-Zn deposits are thicker;further deep drilling and exploration are encouraged in these areas. 展开更多
关键词 Fluid inclusion Stable isotope CHALCOPYRITE re-os geochronology Tonggou DEPOSIT The Eastern TIANSHAN
下载PDF
Re-Os Isotopic Age of Molybdenite of the Jingren Deposit and its Mineralogical Significance of Magnetite,Pyrite and Chalcopyrite 被引量:1
11
作者 CAO Li YI Liwen +4 位作者 DAI Wei XIE Binggeng LI Xiaoqing LU Anhuai GU Xiangping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第4期1236-1248,共13页
The Jingren deposit is part of the Qimantage metallogenic belt within the eastern Kunlun orogenic belt,the largest metallogenic belt in Qinghai Province,northwestern China.Exploration data show that the metal resource... The Jingren deposit is part of the Qimantage metallogenic belt within the eastern Kunlun orogenic belt,the largest metallogenic belt in Qinghai Province,northwestern China.Exploration data show that the metal resources of the Jingren deposit are greater than 93000 t in a mining area of 76.15 km2,which indicates significant exploration potential in the near future.Three W–E-trending faults,F1-3,dominate the extension of the mineralization zone,which consists of chalcopyrite,pyrite,magnetite,galena,sphalerite,and molybdenite as well as bismuth-bearing minerals.The deposit contains a large amount of late Triassic intrusive rocks,however,previous research did not reach a consensus on the timing or the origin of the mineralization owing to a lack of geochronological data and poor exposure conditions.In the present study,Re-Os isotopic dating from six molybdenite samples collected from a borehole of the granodiorite in the Jingren deposit using negative thermal ionization mass spectrometry(NTIMS)showed 187 Re and 187 Os concentrations of 0.26–4.40 ppm and 1.03–16.46 ppb,respectively,with an initial 187 Os/188 Os value of 0.06±0.19.This proves that the Jingren deposit has a metallogenic age of(225±4)Ma and is the product of united mineralization of the Qimantage metallogenic belt and that the Jingren deposit might actually be an Indosinian metallogeny.In addition,the Re content of these samples,at 0.42 ppm to 7.00 ppm shows that the mineralization was derived mainly from a crustal source.Furthermore,electron probe microanalysis(EPMA)conducted on chalcopyrite obtained from 22 metallic mineral samples revealed(Fe+Cu)/S ratios of 1.801–1.947 with an average of 1.852,which is lower than the ideal value(1.875).Besides,the main ore body formed in a relatively higher temperature environment than the surrounding rocks in the Jingren deposit.These data indicate that the Jingren deposit formed in a metallogenic environment at lower temperature.Moreover,according to the TiO_(2)-Al_(2)O_(3)-(MgO+MnO)and TiO_(2)-Al_(2)O_(3)-MgO genetic classification diagram for magnetite,the Jingren deposit most likely belongs to the skarn family.In addition,the Co-Ni-As genetic classification diagram of the pyrite indicates sedimentary and skarn genetic characteristics. 展开更多
关键词 mineralogy re-os isotopic dating molybdenite SKARN INDOSINIAN Jingren deposit Qimantage metallogenic belt
下载PDF
Molybdenite Re-Os,titanite and garnet U-Pb dating of the Magushan skarn Cu-Mo deposit,Xuancheng district,Middle-Lower Yangtze River Metallogenic Belt 被引量:1
12
作者 Yue Li Feng Yuan +5 位作者 Simon M.Jowitt Fangyue Wang Xiangling Li Yufeng Deng Yunyue Wang Taofa Zhou 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期399-415,共17页
The Magushan skarn Cu-Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle-Lower Yangtze River Metallogenic Belt of eastern China.The precise age... The Magushan skarn Cu-Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle-Lower Yangtze River Metallogenic Belt of eastern China.The precise age of an ore deposit is important for understanding the timing of mineralization relative to other geological events in a region and to fully place the formation of a mineral deposit within the geological context of other processes that occur within the study area.Here,we present new molybdenite Re-Os and titanite and andradite garnet U-Pb ages for the Magushan deposit and use these data to outline possible approaches for identifying genetic relationships in geologically complex areas.The spatial and paragenetic relationships between the intrusions,alteration,and mineralization within the study area indicates that the formation of the Magushan deposit is genetically associated with the porphyritic granodiorite.However,this is not always the case,as some areas contain complexly zoned plutons with multiple phases of intrusion or mineralization may be distal from or may not have any clear spatial relationship to a pluton.This means that it may not be possible to determine whether the mineralization formed as a result of single or multiple magmatic/hydrothermal events.As such,the approaches presented in this study provide an approach that allows the identification of any geochronological relationships between mineralization and intrusive events in areas more complex than the study area.Previously published zircon U-Pb data for the mineralization-related porphyritic granodiorite in this area yielded an age of 134.2±1.2 Ma(MSWD=1.4)whereas the Re-Os dating of molybdenite from the study area yielded an isochron age of 137.7±2.5 Ma(MSWD=0.43).The timing of the mineralizing event in the study area was further examined by the dating of magmatic accessory titanite and skarn-related andradite garnet,yielding U-Pb ages of 136.3±2.5 Ma(MSWD=3.2)and 135.9±2.7 Ma(MSWD=2.5),respectively.The dating of magmatic and hydrothermal activity within the Magushan area yields ages around 136 Ma,strongly suggesting that the mineralization in this area formed as a result of the emplacement of the intrusion.The dates presented in this study also provide the first indication of the timing of mineralization within the Xuancheng district.providing evidence of a close genetic relationship between the formation of the mineralization within the Xuancheng district and the Early Cretaceous magmatism that occurred in this area.This in turn suggests that other Early Cretaceous intrusive rocks within this region are likely to be associated with mineralization and should be considered highly prospective for future mineral exploration.This study also indicates that the dating of garnet and titanite can also provide reliable geochronological data and evidence of the timing of mineralization and magmatism,respectively,in areas lacking other dateable minerals(e.g.,molybdenite)or where the relationship between mineralization and magmatism is unclear,for example in areas with multiple stages of magmatism,with complexly zoned plutons,and with distal skarn mineralization. 展开更多
关键词 Magushan skarn deposit molybdenite re-os dating Titanite U-Pb dating Garnet U-Pb dating Xuancheng ore district Middle-Lower Yangtze River Metallogenic Belt
下载PDF
Geochronology and geochemistry of the Donglufang porphyry-skarn Mo-Cu deposit in the southern Yidun Terrane and their geological significances 被引量:4
13
作者 Wenyan He Shixiong Xie +2 位作者 Xudong Liu Xue Gao Yanlu Xing 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第5期1433-1450,共18页
The newly-discovered Donglufang Moe Cu porphyry-skarn deposit is located in the southern Yidun Terrane, southeast Tibet, with more than 80 million tonnes(Mt) of reserves(grading 0.15 wt.% Mo and0.48 wt.% Cu) hosted in... The newly-discovered Donglufang Moe Cu porphyry-skarn deposit is located in the southern Yidun Terrane, southeast Tibet, with more than 80 million tonnes(Mt) of reserves(grading 0.15 wt.% Mo and0.48 wt.% Cu) hosted in Triassic strata and Late Cretaceous granodiorite porphyry. Ree Os dating of molybdenum ore yielded a weighted mean age of 84.9 ± 1.0 Ma and an isochron age of 85.2 ± 0.6 Ma.LA-ICP-MS Ue Pb dating of zircons from the granodiorite porphyry yielded206 Pb/238 U ages ranging from 87.4 Ma to 84.2 Ma with a weighted mean206 Pb/238 U age of 85.1 ±0.5 Ma, indicating a temporal linkage between granitic magmatism and Moe Cu mineralization. Geochemical analyses show that the granodiorite porphyries are I-type granites with Si O_2 contents of 64.3 -66.7 wt.%. These rocks are typically metaluminous with high K_2 O/Na_2 O ratios, low Mg O(1.32 -1.56 wt.%), Cr(5.6 -12.9 ppm), Ni(3.79 -10.81 ppm), Mg#(43 -52) values, and high Sr(304 -844 ppm), Sr/Y(21.2 -50.8) and La/Yb ratios(37.0 -60.1). They are enriched in light rare-earth elements(LREE) relative to heavy rare-earth elements(HREE), with slightly negative Eu anomalies, and are enriched in Th, U and large ion lithophile elements(LILE, e.g., K and Rb), and depleted in high field strength elements(HFSE, e.g., Nb, Ta, P and Ti). They also show negative zircon εHf(t) values(-6.7 to -2.3) and negative whole rock εNd(t) values(à5.2 to-4.3), as well as old Hfe Nd model ages, indicating the magmas were derived from a thickened ancient lower crust within the garneteamphibolite facies. Considering the tectonic evolution of the Yidun Terrane, geochemical characteristics of granodiorite porphyry, and the ages of mineralization obtained in this study. We suggest that the Donglufang deposit was formed in a post-collisional setting, which has a genetic relationship with the emplacement of the granodiorite porphyry. The present study provide key information for the exploration of the Late Cretaceous metallogeny in the Yidun Terrane. 展开更多
关键词 Late cretaceous Mo-Cu METALLOGENESIS molybdenite re-os geochronology U-Pb zircon dating Yidun TERRANE
下载PDF
Re–Os dating of molybdenite and in-situ Pb isotopes of sulfides from the Lamo Zn–Cu deposit in the Dachang tin-polymetallic ore field, Guangxi, China 被引量:11
14
作者 Hai Zhao Wenchao Su +5 位作者 Peng Xie Nengping Shen Jiali Cai Ming Luo Jie Li Zhian Bao 《Acta Geochimica》 EI CAS CSCD 2018年第3期384-394,共11页
The Dachang tin-polymetallic district, Guangxi,China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sed... The Dachang tin-polymetallic district, Guangxi,China, is one of the largest tin ore fields in the world. Both cassiterite-sulfide and Zn–Cu skarn mineralization are hosted in the Mid-Upper Devonian carbonate-rich sediments adjacent to the underlying Cretaceous Longxianggai granite(91–97 Ma). The Lamo Zn–Cu deposit is a typical skarn deposit in the district and occurs at the contact zone between the Upper Devonian limestone and the granite.The ore minerals mainly consist of sphalerite, arsenopyrite,pyrrhotite, galena, chalcopyrite, and minor molybdenite.However, the age of mineralization and source of the metals are not well constrained. In this study, we use the molybdenite Re–Os dating method and in-situ Pb isotopes of sulfides from the Lamo deposit for the first time in order to directly determine the age of mineralization and the tracing source of metals. Six molybdenite samples yielded a more accurate Re–Os isochron age of 90.0 ± 1.1 Ma(MSWD = 0.72), which is much younger than the reported garnet Sm–Nd isochron age of 95 ± 11 Ma and quartz fluid inclusions Rb–Sr isochron age of 99 ± 6 Ma. This age is also interpreted as the age of Zn–Cu skarn mineralization in the Dachang district. Further, in this study we found that in-situ Pb isotopes of sulfides from the Lamo deposit and feldspars in the district's biotite granite and granitic porphyry dikes have a narrow range and an overlap of Pb isotopic compositions(^(206) Pb/^(204) Pb =18.417–18.594,^(207) Pb/^(204) Pb = 15.641–15.746, and^(208) Pb/^(204) Pb = 38.791–39.073), suggesting that the metals were mainly sourced from Cretaceous granitic magma. 展开更多
关键词 molybdenite re-os DATING IN-SITU leadisotopes SKARN DEPOSIT - DACHANG
下载PDF
Age and metal source of orogenic gold deposits in Southeast Guizhou Province, China: Constraints from Re-Os and He-Ar isotopic evidence 被引量:3
15
作者 Jiasheng Wang Hanjie Wen +2 位作者 Chao Li Jinrang Zhang Wei Ding 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第2期581-593,共13页
The orogenic gold deposits in Southeast Guizhou are an important component of the Xuefeng polymetallic ore belt and have significant exploration potential, but geochronology research on these gold deposits is scarce. ... The orogenic gold deposits in Southeast Guizhou are an important component of the Xuefeng polymetallic ore belt and have significant exploration potential, but geochronology research on these gold deposits is scarce. Therefore, the ore genetic models are poorly constrained and remain unclear. In the present study, two important deposits(Pingqiu and Jinjing) are investigated, including combined Re-Os dating and the He-Ar isotope study of auriferous arsenopyrites. It is found that the arsenopyrites from the Pingqiu gold deposit yielded an isochron age of 400 ± 24 Ma,with an initial ^(187)Os/^(188)Os ratio of 1.24 ± 0.57(MSWD = 0.96). An identical isochron age of 400 ± 11 Ma with an initial ^(187)Os/^(188)Os ratio of 1.55 ± 0.14(MSWD = 0.34) was obtained from the Jinjing deposit. These ages correspond to the regional Caledonian orogeny and are interpreted to represent the age of the main stage ore. Both initial ^(187)Os ratios suggest that the Os was derived from crustal rocks. Combined with previous rare earth element(REE), trace elements, Nd-Sr-S-Pb isotope studies on scheelite, inclusion fluids with other residues of gangue quartz, and sulfides from other gold deposits in the region, it is suggested that the ore metals from Pingqiu and Jinjing were sourced from the Xiajiang Group. The He and Ar isotopes of arsenopyrites are characterized by ~3 He/~4 He ratios ranging from 5.3 × 10^(-4) Ra to 2.5 × 10^(-2) Ra(Ra = 1.4 × 10^(-6), the ~3 He/~4 He ratio of air), 40 Ar=/~4 He ratios from 0.64 × 10^(-2) to 15.39×10^(-2), and ^(40)Ar/^(36)Ar ratios from 633.2 to 6582.0. Those noble gas isotopic compositions of fluid inclusions also support a crustal source origin,evidenced by the Os isotope. Meanwhile, recent noble gas studies suggest that the amount of in situ radiogenic ~4 He generated should not be ignored, even when Th and U are present at levels of only a few ppm in host minerals. 展开更多
关键词 re-os geochronology ARSENOPYRITE He-Ar isotopes Pingqiu Jinjing SOUTHEAST Guizhou Province China
下载PDF
Genesis of the Huoshenmiao Mo deposit in the Luanchuan ore district, China: Constraints from geochronology, ?uid inclusion, and H-O-Sisotopes 被引量:2
16
作者 Sai Wang Bing Li +4 位作者 Xingkang Zhang Peng Wang Weiwei Chao Huishou Ye Yongqiang Yang 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第1期331-349,共19页
The Huoshenmiao δeposit is Mo skarn δeposit, located in the western part of the Luanchuan ore δistrict.Mineralization process can be δivided into a skarn and a quartz-sulfide episodes with six stages: prograde(I),... The Huoshenmiao δeposit is Mo skarn δeposit, located in the western part of the Luanchuan ore δistrict.Mineralization process can be δivided into a skarn and a quartz-sulfide episodes with six stages: prograde(I), retrograde(II), quartz-K-feldspar(III), quartz-molybdenite(IV), quartz-pyrite(V), and quartzcalcite(VI). A combined study of geochronology, fluid inclusion(FI), and stable isotopes was conducted to constrain the mineralization age, source of ore materials, as well as the origin and evolution of the ore-forming fluids. Molybdenite Ree Os δating indicates that the δeposit was formed in the Late Jurassic(~145 Ma). The δ^(34)S values of sulfides range from 3.0‰ to 7.1‰, implying that the ore materials in the δeposit are magmatic in origin. Three types and six subtypes of FIs are δistinguished, namely, aqueous two-phase(W_1-and W_2-type), δaughter mineral-bearing multiphase(S_1-and S_2-type), and CO_2-bearing three-phase(C_1-and C_2-type). In stages I and II, the W_1-type FIs δisplay homogenization temperatures(Th) from 496°C to >600°C, with salinities of 14.9-18.3 wt.% NaCl eqv. The FIs in stages III, IV and early stage V composed of coeval S-, C-and W-types, respectively homogenize at similar Th, suggesting the occurrence of boiling. The W1-type FIs in late stage V and stage VI, yield Th of 102-406°C and salinities of 0-4.7 wt.% NaCl eqv. The δD_(H_2O)and δ^(18) O(H_2O)values of the ore-forming fluids in quartz-sulfide episode vary from-112‰ to-76‰, and 11.0‰ to 1.0‰, respectively. All these above observations reveal that the early ore-forming fluids are magmatic in origin, and characterized by high temperature and moderate to high salinity, and gradually evolve to low temperature, low salinity meteoric water. The Huoshenmiao Mo δeposit is associated with the magmatism event induced by the protracted subduction of the Izanagi plate beneath the eastern China continent. The δecrease in temperature, salinity and f(O_2), as well as change of p H δue to boiling and fluid-rock interaction, are the main factors controlling Mo δeposition. 展开更多
关键词 molybdenite re-os age Fluid INCLUSION H-O-S isotopes Huoshenmiao MO DEPOSIT Luanchuan ORE DISTRICT
下载PDF
腾冲地块晚白垩世小龙河花岗岩年龄及其成矿意义
17
作者 刘金梁 陈永清 尚志 《地质通报》 CAS CSCD 北大核心 2024年第5期839-858,共20页
为厘定腾冲地块晚白垩世构造岩浆活动和花岗岩成矿意义,对小龙河花岗岩开展全岩地球化学、年龄和锶-钕-铅同位素研究。小龙河花岗岩由细粒淡色二长花岗岩和似斑状黑云母二长花岗岩组成,锆石U-Pb年龄数据指示它们的岩浆结晶年龄分别为67.... 为厘定腾冲地块晚白垩世构造岩浆活动和花岗岩成矿意义,对小龙河花岗岩开展全岩地球化学、年龄和锶-钕-铅同位素研究。小龙河花岗岩由细粒淡色二长花岗岩和似斑状黑云母二长花岗岩组成,锆石U-Pb年龄数据指示它们的岩浆结晶年龄分别为67.0±1.0 Ma和68.5±1.6 Ma,辉钼矿Re-Os模式年龄分别为67.15±0.99 Ma和69.02±1.22 Ma,同为晚白垩世构造岩浆活动产物。锶-钕-铅同位素与主量和微量元素特征表明,细粒淡色二长花岗岩为S型花岗岩((^(87)Sr/^(86)Sr)_(i)=0.757~0.763);ε_(Nd)(t)=-8.89~-8.99,岩浆起源于中元古代(TDM2=1.59~1.60 Ga)上地壳富粘土硬砂岩部分熔融,其与小龙河锡-钨多金属矿床形成密切相关;似斑状黑云母二长花岗岩为I型花岗岩((^(87)Sr/^(86)Sr)_(i)=0.711,ε_(Nd)(t)=-8.72~-9.16),岩浆起源于中元古代(TDM2=1.58~1.62 Ga)下地壳富粘土硬砂岩重熔。腾冲地块晚白垩世小龙河花岗岩及其锡-钨矿化是中特提斯班公-怒江洋闭合后腾冲地块与保山地块碰撞-后碰撞阶段引发的岩浆活动与热液作用的产物。 展开更多
关键词 腾冲地块 晚白垩世 锆石SHRIMP U-Pb定年 辉钼矿re-os定年 锶-钕-铅同位素地球化学
下载PDF
Re-Os isotope dating of molybdenites in the Huang-shaping Pb-Zn-W-Mo polymetallic deposit, Hunan Province, South China and its geological significance 被引量:29
18
作者 YAO JunMing HUA RenMin +3 位作者 QU WenJun QI HuaWen LIN JinFu DU AnDao 《Science China Earth Sciences》 SCIE EI CAS 2007年第4期519-526,共8页
The large-scale Huangshaping Pb-Zn-W-Mo polymetallic deposit is located in the central Nanling min- eralization zone, South China. Six molybdenite samples from the Huangshaping deposit were selected for Re-Os isotope ... The large-scale Huangshaping Pb-Zn-W-Mo polymetallic deposit is located in the central Nanling min- eralization zone, South China. Six molybdenite samples from the Huangshaping deposit were selected for Re-Os isotope measurement in order to define the mineralization age of the deposit. It yields a Re-Os isochron age of 154.8±1.9 Ma (2σ ), which is in accordance with the Re-Os model ages of 150.9― 156.9 Ma. This age is about 7 Ma younger than their host granite porphyry, which was dated as 161.6±1.1 Ma by zircon U-Pb method using LA-ICPMS. All these ages demonstrate that the Huang- shaping granite and related Pb-Zn-W-Mo deposit occurred in the middle Yanshanian period, when many other granitoid and related ore deposits emplaced and formed, e.g. the Qitianling granite and Furong tin deposit, the Qianlishan granite and giant Shizhuyuan W-Sn-Mo-Bi deposit and Jinchuantang Sn-Bi deposit in the nearby area. They constitute the main part of the magmatic-metallogenic belt of southern Hunan, and represent the large-scale metallogeny in middle Yanshanian in the area. The lower rhenium content in molybdenite of Huangshaping deposit suggests that the ore-forming material was mainly of crust origin. 展开更多
关键词 re-os isotope DATING molybdenite Huangshaping deposit granite southern HUNAN Province
原文传递
Re-Os Geochronology of Porphyry Molybdenum Deposit in South Segment of Da Hinggan Mountains,Northeast China 被引量:19
19
作者 曾庆栋 刘建明 张作伦 《Journal of Earth Science》 SCIE CAS CSCD 2010年第4期392-401,共10页
The ages for porphyry Mo deposits in south segment of Da Hinggan Mountains, Northeast China, are not well known. Five molyhdenite samples from the Aolunhua (奥伦花) porphyry Mo deposit, five molybdenite samples from... The ages for porphyry Mo deposits in south segment of Da Hinggan Mountains, Northeast China, are not well known. Five molyhdenite samples from the Aolunhua (奥伦花) porphyry Mo deposit, five molybdenite samples from the Yangchang (羊场) porphyry-quartz vein Mo deposit and two molybdenite samples from the Banlashan (半拉山) porphyry Mo deposit were selected for Re-Os dating. Three deposits are spatial-temporally associated with the granite porphyry stock. Re-Os isochron age of 131.2±1.9 Ma was obtained for the Aolunhua porphyry Mo deposit. The Yangchang Mo deposit provides isochron age of 138.5±4.5 Ma for two groups of molybdenite (within porphyry ore and within quartz vein). The Banlashan porphyry Mo deposit provides model ages of 140.5±2.4 and 143±2.2 Ma. All of these Re-Os ages are consistent presumed Yanshanian ages for granite intrusions, formed in crust thinning setting in Cretaceous in North China. 展开更多
关键词 molybdenite re-os dating south segment of Da Hinggan Mountains Northeast China.
原文传递
Timing and Source of the Hermyingyi W-Sn Deposit in Southern Myanmar, SE Asia: Evidence from Molybdenite Re-Os Age and Sulfur Isotopic Composition 被引量:1
20
作者 Hai Jiang Shao-Yong Jiang +1 位作者 Wenqian Li Kuidong Zhao 《Journal of Earth Science》 SCIE CAS CSCD 2019年第1期70-79,共10页
The Hermyingyi W-Sn deposit, situated in southern Myanmar, SE Asia, is a typical quartz-vein type W-Sn deposit. The ore-bearing quartz veins are mainly hosted by the Hermyingyi monzogranite which intruded into the Car... The Hermyingyi W-Sn deposit, situated in southern Myanmar, SE Asia, is a typical quartz-vein type W-Sn deposit. The ore-bearing quartz veins are mainly hosted by the Hermyingyi monzogranite which intruded into the Carboniferous metasedimentary rocks of Mergui Series. According to mineral assemblages and crosscutting relationships, four ore-forming stages are recognized:(1) silicate-oxide stage;(2) quartz-sulfide stage;(3) barren quartz vein stage;(4) supergene stage. Five molybdenite samples from the deposit yield Re-Os model ages ranging from 67.8±1.6 to 69.2±1.6 Ma(weighted mean age of 68.7±1.2 Ma), and a well-defined isochron age of 68.4±2.5 Ma(MSWD=0.18, 2σ). This Re-Os age is consistent with the previously published zircon U-Pb age of the Hermyingyi monzogranite(70.0±0.4 Ma)(MSWD=0.9, 2σ) within errors, which indicates a genetic link between the monzogranitic magmatism and W-Sn mineralization. The new high-precision geochronological data reveal that the granitic magmatism and associated W-Sn mineralization in southern Myanmar took place during the Late Cretaceous(70–68 Ma). The extremely low Re contents(22.9 ppb to 299 ppb) in molybdenite, coupled with sulfide δ^(34)S values in the range of +1.9‰ to +5.6‰ suggest that ore-forming metals were predominately sourced from the crustal-derived granitic magma. 展开更多
关键词 Hermyingyi W-Sn deposit molybdenite re-os DATING sulfur ISOTOPES Myanmar SE Asia
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部