Highly efficient electrocatalysts towards hydrogen evolution reaction(HER) with large current density at all-pH values are critical for the sustainable hydrogen production. Herein, we report a free-standing HER electr...Highly efficient electrocatalysts towards hydrogen evolution reaction(HER) with large current density at all-pH values are critical for the sustainable hydrogen production. Herein, we report a free-standing HER electrode, phosphorous-doped molybdenum nitride nanoparticles embedded in 3-dimentional carbon nanosheet matrix(P-Mo2N-CNS) fabricated via one-step carbonization and in-situ formation. The asprepared catalyst shows free-standing architecture with interconnected porous microstructure. P-doped Mo2N nanoparticles with an average diameter of 4.4 nm are well embedded in the 3-dimentional vertical carbon nanosheets matrix. Remarkable electrocatalytic HER performance is observed in alkaline, neutral and acidic media at large current densities. The overpotential of P-Mo2N-CNS to drive a current density of 100 mA cm-2 in 0.5 M H2SO4 and 1.0 M PBS is only 181 and 221 mV, respectively. In particular, the current density reaches up to 1000 mA cm-2 at a low overpotential of 256 mV in 1.0 M KOH, much better than that of the commercial Pt/C catalyst. Density functional theory calculations suggest the optimized H sorption kinetics on Mo2N after P doping, elucidating the superior activity.展开更多
Using the specially designed mechanochemical ball-mill equipment, ultramicro molybdenum nitride powders were prepared from pure molybdenum powders in ammonia atmosphere at room temperature by high-energy ball milling....Using the specially designed mechanochemical ball-mill equipment, ultramicro molybdenum nitride powders were prepared from pure molybdenum powders in ammonia atmosphere at room temperature by high-energy ball milling. The structure and the particle size of the powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the mass ratio of grinding media to powder was 8:1, after milling for 30 h the Mo2N of fcc structure was obtained, and the average particle size of the powders was around 100 nm. It is found that the chemisorption of ammonia onto the fresh molybdenum surfaces created by milling was the predominant process during solid-gas reaction, and the energy input due to introduction of highly dense grain boundaries and lattice defects offered the activation energy for the transition from Mo-N chemisorption to molybdenum nitride. In addition, the change of Mo electronic undersaturation induced by the grain refining accelerated the bonding between Mo and N. The mechanism model of whole nitriding reaction was given, During the high-energy ball milling processing, the rotational speed of milling played a critical role in determining the overall reaction speed.展开更多
Sodium-ion storage devices are highly desirable for large-scale energy storage applications owing to the wide availability of sodium resources and low cost.Transition metal nitrides(TMNs)are promising anode materials ...Sodium-ion storage devices are highly desirable for large-scale energy storage applications owing to the wide availability of sodium resources and low cost.Transition metal nitrides(TMNs)are promising anode materials for sodium-ion storage,while their detailed reaction mechanism remains unexplored.Herein,we synthesize the mesoporous Mo3N2 nanowires(Meso-Mo_(3)N_(2)-NWs).The sodium-ion storage mechanism of Mo3N2 is systematically investigated through in-situ XRD,ex-situ experimental characterizations and detailed kinetics analysis.Briefly,the Mo_(3)N_(2) undergoes a surface pseudocapacitive redox charge storage process.Benefiting from the rapid surface redox reaction,the Meso-Mo_(3)N_(2)-NWs anode delivers high specific capacity(282 m Ah g^(-1) at 0.1 A g^(-1)),excellent rate capability(87 m Ah g^(-1) at 16 A g^(-1))and long cycling stability(a capacity retention of 78.6%after 800 cycles at 1 A g^(-1)).The present work highlights that the surface pseudocapacitive sodium-ion storage mechanism enables to overcome the sluggish sodium-ion diffusion process,which opens a new direction to design and synthesize high-rate sodiumion storage materials.展开更多
Formic acid is regarded to be one of the most prospective hydrogen carriers.Effective screening of the fitting non-noble-metal-based heterogeneous catalysts to substitute the expensive noble-metal-based ones for FA de...Formic acid is regarded to be one of the most prospective hydrogen carriers.Effective screening of the fitting non-noble-metal-based heterogeneous catalysts to substitute the expensive noble-metal-based ones for FA dehydrogenation is considered as a key to the commercial application for hydrogen economics.Herein,dehydrogenation of liquid neat FA achieved a gas production value of 1753.5 mL/gcat./h at 94℃by using a biomass-derivedγ-Mo_(2)N based catalyst synthesized from the earth-abundant molybdenum and soybean with a facile pyrolysis process.The effect of material ratio,pyrolysis temperature on the catalytic performance of FA dehydrogenation were studied in details.In particular,the catalyst obtained at a pyrolysis temperature of 700℃,weight ratios of ammonium molybdate to soybean of 0.2/1 exhibited the highest activity.In addition,the catalytic activity increased with the increase of FA concentration,but conversely,the dehydrogenation selectivity decreased with the increasing FA concentration.Moreover,it was found that the Bio-Mo_(2)N catalyst was rather stable over the 40 h continuous reaction period.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51772089,21872046 and 51902100)the Outstanding Youth Scientist Foundation of Hunan Province(Grant No.2018JJ1009)+5 种基金the Youth 1000 Talent Program of Chinathe Science and Technology Innovation Platform and Talent Plan of Hunan Province(Grant No.2017XK2023)the Research and Development Plan of Key Areas in Hunan Province(Grant No.2019GK2235)China Postdoctoral Science Foundation(2018M642971)the Youth Scientist Foundation of Hunan Province(Grant No.2019JJ50087)the Shenzhen Science and Technology Innovation Committee(Grant No.JCYJ20151013162733704)。
文摘Highly efficient electrocatalysts towards hydrogen evolution reaction(HER) with large current density at all-pH values are critical for the sustainable hydrogen production. Herein, we report a free-standing HER electrode, phosphorous-doped molybdenum nitride nanoparticles embedded in 3-dimentional carbon nanosheet matrix(P-Mo2N-CNS) fabricated via one-step carbonization and in-situ formation. The asprepared catalyst shows free-standing architecture with interconnected porous microstructure. P-doped Mo2N nanoparticles with an average diameter of 4.4 nm are well embedded in the 3-dimentional vertical carbon nanosheets matrix. Remarkable electrocatalytic HER performance is observed in alkaline, neutral and acidic media at large current densities. The overpotential of P-Mo2N-CNS to drive a current density of 100 mA cm-2 in 0.5 M H2SO4 and 1.0 M PBS is only 181 and 221 mV, respectively. In particular, the current density reaches up to 1000 mA cm-2 at a low overpotential of 256 mV in 1.0 M KOH, much better than that of the commercial Pt/C catalyst. Density functional theory calculations suggest the optimized H sorption kinetics on Mo2N after P doping, elucidating the superior activity.
文摘Using the specially designed mechanochemical ball-mill equipment, ultramicro molybdenum nitride powders were prepared from pure molybdenum powders in ammonia atmosphere at room temperature by high-energy ball milling. The structure and the particle size of the powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the mass ratio of grinding media to powder was 8:1, after milling for 30 h the Mo2N of fcc structure was obtained, and the average particle size of the powders was around 100 nm. It is found that the chemisorption of ammonia onto the fresh molybdenum surfaces created by milling was the predominant process during solid-gas reaction, and the energy input due to introduction of highly dense grain boundaries and lattice defects offered the activation energy for the transition from Mo-N chemisorption to molybdenum nitride. In addition, the change of Mo electronic undersaturation induced by the grain refining accelerated the bonding between Mo and N. The mechanism model of whole nitriding reaction was given, During the high-energy ball milling processing, the rotational speed of milling played a critical role in determining the overall reaction speed.
基金supported by the National Natural Science Foundation of China(51832004,51521001)the National Key Research and Development Program of China(2016YFA0202603)+2 种基金the Program of Introducing Talents of Discipline to Universities(B17034)the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003)the “Double-First Class”Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University。
文摘Sodium-ion storage devices are highly desirable for large-scale energy storage applications owing to the wide availability of sodium resources and low cost.Transition metal nitrides(TMNs)are promising anode materials for sodium-ion storage,while their detailed reaction mechanism remains unexplored.Herein,we synthesize the mesoporous Mo3N2 nanowires(Meso-Mo_(3)N_(2)-NWs).The sodium-ion storage mechanism of Mo3N2 is systematically investigated through in-situ XRD,ex-situ experimental characterizations and detailed kinetics analysis.Briefly,the Mo_(3)N_(2) undergoes a surface pseudocapacitive redox charge storage process.Benefiting from the rapid surface redox reaction,the Meso-Mo_(3)N_(2)-NWs anode delivers high specific capacity(282 m Ah g^(-1) at 0.1 A g^(-1)),excellent rate capability(87 m Ah g^(-1) at 16 A g^(-1))and long cycling stability(a capacity retention of 78.6%after 800 cycles at 1 A g^(-1)).The present work highlights that the surface pseudocapacitive sodium-ion storage mechanism enables to overcome the sluggish sodium-ion diffusion process,which opens a new direction to design and synthesize high-rate sodiumion storage materials.
基金supported by the Natural Science Foundation of Jiangxi Province of China(20224BAB203026)National Natural Science Foundation of China(22169017)+1 种基金the Science and Technology Project of Jiangxi Education Department of China(GJJ201709,GJJ2201823,and GJJ2201830)the Subsidy Project after R&D Investment of Shangrao City,China(SKB2021002).
文摘Formic acid is regarded to be one of the most prospective hydrogen carriers.Effective screening of the fitting non-noble-metal-based heterogeneous catalysts to substitute the expensive noble-metal-based ones for FA dehydrogenation is considered as a key to the commercial application for hydrogen economics.Herein,dehydrogenation of liquid neat FA achieved a gas production value of 1753.5 mL/gcat./h at 94℃by using a biomass-derivedγ-Mo_(2)N based catalyst synthesized from the earth-abundant molybdenum and soybean with a facile pyrolysis process.The effect of material ratio,pyrolysis temperature on the catalytic performance of FA dehydrogenation were studied in details.In particular,the catalyst obtained at a pyrolysis temperature of 700℃,weight ratios of ammonium molybdate to soybean of 0.2/1 exhibited the highest activity.In addition,the catalytic activity increased with the increase of FA concentration,but conversely,the dehydrogenation selectivity decreased with the increasing FA concentration.Moreover,it was found that the Bio-Mo_(2)N catalyst was rather stable over the 40 h continuous reaction period.