Bromine has attracted significant attention as a cathode material for aqueous batteries due to its high reduction potential of 1.05 V(Br_(3)^(-)+2e~-■3Br~-),impressive theoretical specific capacity of 223 mA h g^(-1)...Bromine has attracted significant attention as a cathode material for aqueous batteries due to its high reduction potential of 1.05 V(Br_(3)^(-)+2e~-■3Br~-),impressive theoretical specific capacity of 223 mA h g^(-1),and rapid reaction kinetics in the electrolyte.However,searching for compatible anode materials to match with bromine has posed a challenge due to its highly corrosive nature.In this study,we developed oxygen-deficient MoO_(3) with TiO_(2) coating(referred to as MoO_(3-x)@TiO_(2))as an anode material to pair with a bromine cathode in static full batteries.The oxygen deficiency contributes to enhanced electronic and protonic diffusion within the MoO_(3-x)lattice,while the TiO_(2) coating mitigates structural dissolution and proton trapping during cycling.The MoO_(3-x)@TiO_(2) demonstrates fast charge storage kinetics and excellent resistance to bromine corrosion.The impressive compatibility between MoO_(3-x)@TiO_(2) and bromine enables the construction of membrane-less full batteries with exceptional rate capability and cyclic stability.The MoO_(3-x)@TiO_(2)-bromine battery achieves an energy density of70.8 W h kg^(-1)at a power density of 328.1 W kg^(-1),showcasing an impressive long-term cyclic life of 20,000 cycles.Our study provides valuable insights for the development of high-performance aqueous secondary batteries.展开更多
Molybdenum oxide nanoparticles(NPs) with tunable plasmonic resonance in the near-infrared region display superior semiconducting features and photothermal properties, which are highly related to the crystalline and de...Molybdenum oxide nanoparticles(NPs) with tunable plasmonic resonance in the near-infrared region display superior semiconducting features and photothermal properties, which are highly related to the crystalline and defective structures such as oxygen deficiencies. However,fundamental understanding on the structure-function relationship between crystalline/defective structures and photothermal properties is still unclear. To address this, herein,we have developed an "in-situ confined oxidation-reduction"strategy to regulate the defect features of molybdenum oxide NPs in the dual-mesoporous silica nanoreactor. Especially, the effects of crystalline structure/oxygen defects of molybdenum oxides on the photothermal performances were investigated by facilely tuning the amount of molybdenum resource and the reduction temperature. As a photothermal nanoagent, the optimal defective molybdenum oxide NPs encapsulated in PEGylated porous silica nanoreactor(designated as MoO_(3)@PPSNs) exhibit excellent biological stability and strong localized surface plasmon resonance effect in nearinfrared absorption range with the highest photothermal conversion efficiency up to 78.7% under 808 nm laser irradiation. More importantly, the remarkable photothermal effects of MoO_(3)@PPSNs were comprehensively demonstrated both in vitro and in vivo. Consequently, we envision that the plasmonic MoO_(3)NPs in a biocompatible porous silica nanoreactor could be used as an efficient photothermal therapy agent for photothermal ablation of tumors.展开更多
基金the financial support from the National Key Research and Development Program of China(2022YFB2502003)the Guangdong Basic and Applied Basic Research Foundation(2023B1515040011)。
文摘Bromine has attracted significant attention as a cathode material for aqueous batteries due to its high reduction potential of 1.05 V(Br_(3)^(-)+2e~-■3Br~-),impressive theoretical specific capacity of 223 mA h g^(-1),and rapid reaction kinetics in the electrolyte.However,searching for compatible anode materials to match with bromine has posed a challenge due to its highly corrosive nature.In this study,we developed oxygen-deficient MoO_(3) with TiO_(2) coating(referred to as MoO_(3-x)@TiO_(2))as an anode material to pair with a bromine cathode in static full batteries.The oxygen deficiency contributes to enhanced electronic and protonic diffusion within the MoO_(3-x)lattice,while the TiO_(2) coating mitigates structural dissolution and proton trapping during cycling.The MoO_(3-x)@TiO_(2) demonstrates fast charge storage kinetics and excellent resistance to bromine corrosion.The impressive compatibility between MoO_(3-x)@TiO_(2) and bromine enables the construction of membrane-less full batteries with exceptional rate capability and cyclic stability.The MoO_(3-x)@TiO_(2)-bromine battery achieves an energy density of70.8 W h kg^(-1)at a power density of 328.1 W kg^(-1),showcasing an impressive long-term cyclic life of 20,000 cycles.Our study provides valuable insights for the development of high-performance aqueous secondary batteries.
基金supported by the National Key Research and Development Program of China (2016YFA0203700)the National Natural Science Foundation of China (51672083, 51962022 and 52072124)+4 种基金the Natural Science Foundation of Shanghai (20ZR1414900)the Program of Shanghai Academic/Technology Research Leader (18XD1401400)the Leading Talents in Shanghai in 2018the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe 111 Project (B14018)。
文摘Molybdenum oxide nanoparticles(NPs) with tunable plasmonic resonance in the near-infrared region display superior semiconducting features and photothermal properties, which are highly related to the crystalline and defective structures such as oxygen deficiencies. However,fundamental understanding on the structure-function relationship between crystalline/defective structures and photothermal properties is still unclear. To address this, herein,we have developed an "in-situ confined oxidation-reduction"strategy to regulate the defect features of molybdenum oxide NPs in the dual-mesoporous silica nanoreactor. Especially, the effects of crystalline structure/oxygen defects of molybdenum oxides on the photothermal performances were investigated by facilely tuning the amount of molybdenum resource and the reduction temperature. As a photothermal nanoagent, the optimal defective molybdenum oxide NPs encapsulated in PEGylated porous silica nanoreactor(designated as MoO_(3)@PPSNs) exhibit excellent biological stability and strong localized surface plasmon resonance effect in nearinfrared absorption range with the highest photothermal conversion efficiency up to 78.7% under 808 nm laser irradiation. More importantly, the remarkable photothermal effects of MoO_(3)@PPSNs were comprehensively demonstrated both in vitro and in vivo. Consequently, we envision that the plasmonic MoO_(3)NPs in a biocompatible porous silica nanoreactor could be used as an efficient photothermal therapy agent for photothermal ablation of tumors.