The properties of a metal-oxide-semiconductor device on a single layer MoS_(2)(molybdenum disulfide)semiconductor are determined theoretically utilizing the concept of physics that the carrier effective masses in mate...The properties of a metal-oxide-semiconductor device on a single layer MoS_(2)(molybdenum disulfide)semiconductor are determined theoretically utilizing the concept of physics that the carrier effective masses in materials are related to the intrinsic Fermi energy levels in materials by the universal mass-energy equivalence equation given as dE/E=dm/m,where E is the energy and m is the mass of the free electron.The known parameters of electron effective mass of 0.48 m and the direct bandgap of 1.8 eV for monolayer MoS_(2) semiconductor are utilized to determine the properties of the MOS(metal-oxide-semiconductor)device,with the given previous research consequence that the threshold for electron heating in SiO_(2) is 2 MV/cm-eV.展开更多
The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy stor...The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy storage, specifically use of renewable hydrogen. The hydrogen evolution reaction (HER) of electrochemical water splitting is a promising method for producing green hydrogen. Recently, two-dimensional nanomaterials have shown great promise in promoting the HER in terms of both fundamental research and practical applications due to their high specific surface areas and tunable electronic properties. Among them, molybdenum disulfide (MoS2), a non-noble metal catalyst, has emerged as a promising alternative to replace expensive platinum-based catalysts for the HER because MoS_(2)has a high inherent activity, low cost, and abundant reserves. At present, greatly improved activity and stability are urgently needed for MoS_(2)to enable wide deployment of water electrolysis devices. In this regard, efficient strategies for precisely modifying MoS_(2)are of interest. Herein, the progress made with MoS_(2)as an HER catalyst is reviewed, with a focus on modification strategies, including phase engineering, morphology design, defect engineering, heteroatom doping, and heterostructure construction. It is believed that these strategies will be helpful in designing and developing high-performance and low-cost MoS2-based catalysts by lowering the charge transfer barrier, increasing the active site density, and optimizing the surface hydrophilicity. In addition, the challenges of MoS_(2)electrocatalysts and perspectives for future research and development of these catalysts are discussed.展开更多
Due to their unique characteristics,two-dimensional(2D)materials have drawn great attention as promising candidates for the next generation of integrated circuits,which generate a calculation unit with a new working m...Due to their unique characteristics,two-dimensional(2D)materials have drawn great attention as promising candidates for the next generation of integrated circuits,which generate a calculation unit with a new working mechanism,called a logic transistor.To figure out the application prospects of logic transistors,exploring the temperature dependence of logic characteristics is important.In this work,we explore the temperature effect on the electrical characteristic of a logic transistor,finding that changes in temperature cause transformation in the calculation:logical output converts from‘AND’at 10 K to‘OR’at 250 K.The transformation phenomenon of temperature regulation in logical output is caused by energy band which decreases with increasing temperature.In the experiment,the indirect band gap of MoS2 shows an obvious decrease from 1.581 eV to 1.535 eV as the temperature increases from 10 K to 250 K.The change of threshold voltage with temperature is consistent with the energy band,which confirms the theoretical analysis.Therefore,as a promising material for future integrated circuits,the demonstrated characteristic of 2D transistors suggests possible application for future functional devices.展开更多
Ti_(3)C_(2)T_(x)MXene fiber has shown extraordinary potential for supercapacitor electrode in wearable elec-tronics and textile energy storage,but realizing high energy density and practical-powered applications remai...Ti_(3)C_(2)T_(x)MXene fiber has shown extraordinary potential for supercapacitor electrode in wearable elec-tronics and textile energy storage,but realizing high energy density and practical-powered applications remains a great challenge.Here,we report a covalent-architected molybdenum disulfide-Ti_(3)C_(2)T_(x)(MoS_(2)-Ti_(3)C_(2)T_(x))core-shell fiber for high-performance supercapacitor.Benefiting from the microfluidic and micro-reaction strategies,the ordered MoS_(2)arrays are strongly bridged on Ti_(3)C_(2)T_(x)fiber via Ti-O-Mo bond,re-sulting in large exposed surface,enhanced porosity and excellent interfacial conduction for charges high diffusion and faradaic transfer.The MoS_(2)-Ti_(3)C_(2)T_(x)fiber exhibits ultra-large capacitance of 2028 F cm^(-3)and admirable reversibility in 1 M H_(2)SO_(4)aqueous electrolyte.Meanwhile,MoS_(2)-Ti_(3)C_(2)T_(x)fiber-based solid-state supercapacitor presents high energy density of 23.86 mWh cm^(-3),capacitance of 1073.6 F cm^(-3)and superior cycling ability of 92.13%retention after 20,000 cycles,which can realize stable energy supply for wearable watch,LEDs,electric fans,toy ship and self-powered devices.Our work may provide an insight-ful guidance for the advanced design of structural fiber towards robust new energy and next-generation wearable industry.展开更多
Molybdenum disulfide (MoS2) holds great promise as atomically thin two-dimensional (2D) semiconductor for future electronics and opto-electronics. In this report, we study the magnetoresistance (MR) of MoS2 field-effe...Molybdenum disulfide (MoS2) holds great promise as atomically thin two-dimensional (2D) semiconductor for future electronics and opto-electronics. In this report, we study the magnetoresistance (MR) of MoS2 field-effect transistors (FETs) with graphene insertion layer at the contact interface. Owing to the unique device structure and high-quality contact interface, a gate-tunable linear MR up to 67% is observed at 2 K. By comparing with the MRs of graphene FETs and MoS2 FETs with conventional metal contact, it is found that this unusual MR is most likely to be originated from the contact interfaces between graphene and MoS2, and can be explained by the classical linear MR model caused by spatial fluctuation of carrier mobility. Our study demonstrates large MR responses in MoS2-based systems through heterojunction design, shedding lights for the future magneto-electronics and van der Waals heterostructures.展开更多
Molybdenum disulfide(MoS_(2)),a typical two-dimensional transition metallic layered material,attracts tremendous attentions in the electrochemical energy storage due to its excellent physicochemical properties.However...Molybdenum disulfide(MoS_(2)),a typical two-dimensional transition metallic layered material,attracts tremendous attentions in the electrochemical energy storage due to its excellent physicochemical properties.However,with the deepening of the research and exploration of the lithium storage mechanism of these advanced MoS_(2)-based anode materials,the complex reaction process influenced by internal and external factors hinders the exhaustive understanding of the lithium storage process.To design stable anode material with high performance,it is urgent to review the mechanisms of reported anode materials and summarize the related factors that influence the reaction processes.This review aims to dissect all possible side reactions during charging and discharging process,uncover internal and external factors inducing various anode reactions and finally put forward strategies of controlling high cycling capacity and super-stable lithium storage capability of MoS_(2).This review will be helpful to the design of MoS_(2)-based lithium-ion batteries(LIBs) with excellent cycle performance to enlarge the application fields of these advanced electrochemical energy storage devices.展开更多
Two-dimensional (2D) layered transition metal dichalcogenide (TMD) materials (e.g., MoS2) have attracted considerable interest due to their atomically thin geometry and semiconducting electronic properties. With...Two-dimensional (2D) layered transition metal dichalcogenide (TMD) materials (e.g., MoS2) have attracted considerable interest due to their atomically thin geometry and semiconducting electronic properties. With ultrahigh surface to volume ratio, the electronic properties of these atomically thin semiconductors can be readily modulated by their environment. Here we report an investigation of the effects of mercury(II) (Hg^2+) ions on the electrical transport properties of few-layer molybdenum disulfide (MoS2). The interaction between Hg^2+ ions and few-layer MoS2 was studied by field-effect transistor measurements and photoluminescence. Due to a high binding affinity between Hg2. ions and the sulfur sites on the surface of MoS2 layers, Hg^2+ ions can strongly bind to MoS2. We show that the binding of Hg^2+ can produce a p-type doping effect to reduce the electron concentration in n-type few-layer MoS2. It can thus effectively modulate the electron transport and photoluminescence properties in few-layer MoS2. By monitoring the conductance change of few-layer MoS2 in varying concentration Hg2~ solutions, we further show that few-layer MoS2 transistors can function as highly sensitive sensors for rapid electrical detection of Hg^2+ ion with a detection limit of 30 pM.展开更多
High performance supercapacitors coupled with mechanical flexibility are needed to drive flexible and wearable electronics that have anesthetic appeal and multi-functionality. Two dimensional(2D) materials have attr...High performance supercapacitors coupled with mechanical flexibility are needed to drive flexible and wearable electronics that have anesthetic appeal and multi-functionality. Two dimensional(2D) materials have attracted attention owing to their unique physicochemical and electrochemical properties, in addition to their ability to form hetero-structures with other nanomaterials further improving mechanical and electrochemical properties. After a brief introduction of supercapacitors and 2D materials, recent progress on flexible supercapacitors using 2D materials is reviewed. Here we provide insights into the structure–property relationships of flexible electrodes, in particular free-standing films. We also present our perspectives on the development of flexible supercapacitors.展开更多
文摘The properties of a metal-oxide-semiconductor device on a single layer MoS_(2)(molybdenum disulfide)semiconductor are determined theoretically utilizing the concept of physics that the carrier effective masses in materials are related to the intrinsic Fermi energy levels in materials by the universal mass-energy equivalence equation given as dE/E=dm/m,where E is the energy and m is the mass of the free electron.The known parameters of electron effective mass of 0.48 m and the direct bandgap of 1.8 eV for monolayer MoS_(2) semiconductor are utilized to determine the properties of the MOS(metal-oxide-semiconductor)device,with the given previous research consequence that the threshold for electron heating in SiO_(2) is 2 MV/cm-eV.
基金the Outstanding Youth Project of Guangdong Provincial Natural Science Foundation,China(Grant No.2022B1515020020)the National Natural Science Foundation of China(Grant No.2225071013)+2 种基金the Guangdong Basic and Applied Basic Research Foundation,China(No.2022B1515120079)the Funding by Science and Technology Projects in Guangzhou,China(No.202206050003)the Guangdong Engineering Technology Research Center for Hydrogen Energy and Fuel Cells,China.
文摘The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy storage, specifically use of renewable hydrogen. The hydrogen evolution reaction (HER) of electrochemical water splitting is a promising method for producing green hydrogen. Recently, two-dimensional nanomaterials have shown great promise in promoting the HER in terms of both fundamental research and practical applications due to their high specific surface areas and tunable electronic properties. Among them, molybdenum disulfide (MoS2), a non-noble metal catalyst, has emerged as a promising alternative to replace expensive platinum-based catalysts for the HER because MoS_(2)has a high inherent activity, low cost, and abundant reserves. At present, greatly improved activity and stability are urgently needed for MoS_(2)to enable wide deployment of water electrolysis devices. In this regard, efficient strategies for precisely modifying MoS_(2)are of interest. Herein, the progress made with MoS_(2)as an HER catalyst is reviewed, with a focus on modification strategies, including phase engineering, morphology design, defect engineering, heteroatom doping, and heterostructure construction. It is believed that these strategies will be helpful in designing and developing high-performance and low-cost MoS2-based catalysts by lowering the charge transfer barrier, increasing the active site density, and optimizing the surface hydrophilicity. In addition, the challenges of MoS_(2)electrocatalysts and perspectives for future research and development of these catalysts are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61925402,61851402,and 61734003)Science and Technology Commission of Shanghai Municipality,China(Grant No.19JC1416600)+1 种基金National Key Research and Development Program of China(Grant No.2017YFB0405600)Shanghai Education Development Foundation and Shanghai Municipal Education Commission Shuguang Program,China(Grant No.18SG01).
文摘Due to their unique characteristics,two-dimensional(2D)materials have drawn great attention as promising candidates for the next generation of integrated circuits,which generate a calculation unit with a new working mechanism,called a logic transistor.To figure out the application prospects of logic transistors,exploring the temperature dependence of logic characteristics is important.In this work,we explore the temperature effect on the electrical characteristic of a logic transistor,finding that changes in temperature cause transformation in the calculation:logical output converts from‘AND’at 10 K to‘OR’at 250 K.The transformation phenomenon of temperature regulation in logical output is caused by energy band which decreases with increasing temperature.In the experiment,the indirect band gap of MoS2 shows an obvious decrease from 1.581 eV to 1.535 eV as the temperature increases from 10 K to 250 K.The change of threshold voltage with temperature is consistent with the energy band,which confirms the theoretical analysis.Therefore,as a promising material for future integrated circuits,the demonstrated characteristic of 2D transistors suggests possible application for future functional devices.
基金This work was financially supported by the National Natu-ral Science Foundation of China(Nos.22278378,22208190,and 21706120)the Natural Science Foundation of Jiangsu Province(No.BK20211592)+2 种基金the National Postdoctoral Program for Innovative Tal-ents(No.BX2021146)the Shuimu Tsinghua Scholar Program(No.2021SM055)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Ti_(3)C_(2)T_(x)MXene fiber has shown extraordinary potential for supercapacitor electrode in wearable elec-tronics and textile energy storage,but realizing high energy density and practical-powered applications remains a great challenge.Here,we report a covalent-architected molybdenum disulfide-Ti_(3)C_(2)T_(x)(MoS_(2)-Ti_(3)C_(2)T_(x))core-shell fiber for high-performance supercapacitor.Benefiting from the microfluidic and micro-reaction strategies,the ordered MoS_(2)arrays are strongly bridged on Ti_(3)C_(2)T_(x)fiber via Ti-O-Mo bond,re-sulting in large exposed surface,enhanced porosity and excellent interfacial conduction for charges high diffusion and faradaic transfer.The MoS_(2)-Ti_(3)C_(2)T_(x)fiber exhibits ultra-large capacitance of 2028 F cm^(-3)and admirable reversibility in 1 M H_(2)SO_(4)aqueous electrolyte.Meanwhile,MoS_(2)-Ti_(3)C_(2)T_(x)fiber-based solid-state supercapacitor presents high energy density of 23.86 mWh cm^(-3),capacitance of 1073.6 F cm^(-3)and superior cycling ability of 92.13%retention after 20,000 cycles,which can realize stable energy supply for wearable watch,LEDs,electric fans,toy ship and self-powered devices.Our work may provide an insight-ful guidance for the advanced design of structural fiber towards robust new energy and next-generation wearable industry.
基金the National Key Research and Development Program of China(No.2018YFB0406603)the National Natural Science Foundation of China(Nos.61574006,61522401,61927806,61521004,11634002,and U1632156)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB30000000).
文摘Molybdenum disulfide (MoS2) holds great promise as atomically thin two-dimensional (2D) semiconductor for future electronics and opto-electronics. In this report, we study the magnetoresistance (MR) of MoS2 field-effect transistors (FETs) with graphene insertion layer at the contact interface. Owing to the unique device structure and high-quality contact interface, a gate-tunable linear MR up to 67% is observed at 2 K. By comparing with the MRs of graphene FETs and MoS2 FETs with conventional metal contact, it is found that this unusual MR is most likely to be originated from the contact interfaces between graphene and MoS2, and can be explained by the classical linear MR model caused by spatial fluctuation of carrier mobility. Our study demonstrates large MR responses in MoS2-based systems through heterojunction design, shedding lights for the future magneto-electronics and van der Waals heterostructures.
基金financially supported by the National Funds for Distinguished Young Scientists (No. 61825503)the National Natural Science Foundation of China (Nos. 51902101, 61775101,61804082)+3 种基金the Youth Natural Science Foundation of Hunan Province (No. 2019JJ50044)Natural Science Foundation of Jiangsu Province (No. BK20201381)Science Foundation of Nanjing University of Posts and Telecommunications (No. NY219144)China Postdoctoral Science Foundation (Nos. 2020TQ0202, 2021M692161)。
文摘Molybdenum disulfide(MoS_(2)),a typical two-dimensional transition metallic layered material,attracts tremendous attentions in the electrochemical energy storage due to its excellent physicochemical properties.However,with the deepening of the research and exploration of the lithium storage mechanism of these advanced MoS_(2)-based anode materials,the complex reaction process influenced by internal and external factors hinders the exhaustive understanding of the lithium storage process.To design stable anode material with high performance,it is urgent to review the mechanisms of reported anode materials and summarize the related factors that influence the reaction processes.This review aims to dissect all possible side reactions during charging and discharging process,uncover internal and external factors inducing various anode reactions and finally put forward strategies of controlling high cycling capacity and super-stable lithium storage capability of MoS_(2).This review will be helpful to the design of MoS_(2)-based lithium-ion batteries(LIBs) with excellent cycle performance to enlarge the application fields of these advanced electrochemical energy storage devices.
文摘Two-dimensional (2D) layered transition metal dichalcogenide (TMD) materials (e.g., MoS2) have attracted considerable interest due to their atomically thin geometry and semiconducting electronic properties. With ultrahigh surface to volume ratio, the electronic properties of these atomically thin semiconductors can be readily modulated by their environment. Here we report an investigation of the effects of mercury(II) (Hg^2+) ions on the electrical transport properties of few-layer molybdenum disulfide (MoS2). The interaction between Hg^2+ ions and few-layer MoS2 was studied by field-effect transistor measurements and photoluminescence. Due to a high binding affinity between Hg2. ions and the sulfur sites on the surface of MoS2 layers, Hg^2+ ions can strongly bind to MoS2. We show that the binding of Hg^2+ can produce a p-type doping effect to reduce the electron concentration in n-type few-layer MoS2. It can thus effectively modulate the electron transport and photoluminescence properties in few-layer MoS2. By monitoring the conductance change of few-layer MoS2 in varying concentration Hg2~ solutions, we further show that few-layer MoS2 transistors can function as highly sensitive sensors for rapid electrical detection of Hg^2+ ion with a detection limit of 30 pM.
基金Funding from the Australian Research Council Centre of Excellence Scheme(CE 140100012)the funding from National Natural Science Foundation of China(51502206)+1 种基金the CSC scholarship from the Ministry of Education of PR Chinathe support of the CSC scholarship from the Ministry of Education of PR China
文摘High performance supercapacitors coupled with mechanical flexibility are needed to drive flexible and wearable electronics that have anesthetic appeal and multi-functionality. Two dimensional(2D) materials have attracted attention owing to their unique physicochemical and electrochemical properties, in addition to their ability to form hetero-structures with other nanomaterials further improving mechanical and electrochemical properties. After a brief introduction of supercapacitors and 2D materials, recent progress on flexible supercapacitors using 2D materials is reviewed. Here we provide insights into the structure–property relationships of flexible electrodes, in particular free-standing films. We also present our perspectives on the development of flexible supercapacitors.