The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy stor...The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy storage, specifically use of renewable hydrogen. The hydrogen evolution reaction (HER) of electrochemical water splitting is a promising method for producing green hydrogen. Recently, two-dimensional nanomaterials have shown great promise in promoting the HER in terms of both fundamental research and practical applications due to their high specific surface areas and tunable electronic properties. Among them, molybdenum disulfide (MoS2), a non-noble metal catalyst, has emerged as a promising alternative to replace expensive platinum-based catalysts for the HER because MoS_(2)has a high inherent activity, low cost, and abundant reserves. At present, greatly improved activity and stability are urgently needed for MoS_(2)to enable wide deployment of water electrolysis devices. In this regard, efficient strategies for precisely modifying MoS_(2)are of interest. Herein, the progress made with MoS_(2)as an HER catalyst is reviewed, with a focus on modification strategies, including phase engineering, morphology design, defect engineering, heteroatom doping, and heterostructure construction. It is believed that these strategies will be helpful in designing and developing high-performance and low-cost MoS2-based catalysts by lowering the charge transfer barrier, increasing the active site density, and optimizing the surface hydrophilicity. In addition, the challenges of MoS_(2)electrocatalysts and perspectives for future research and development of these catalysts are discussed.展开更多
Molybdenum-based materials have been intensively investigated for high-performance gas sensor applications.Particularly,molybdenum oxides and dichalcogenides nanostructures have been widely examined due to their tunab...Molybdenum-based materials have been intensively investigated for high-performance gas sensor applications.Particularly,molybdenum oxides and dichalcogenides nanostructures have been widely examined due to their tunable structural and physicochemical properties that meet sensor requirements.These materials have good durability,are naturally abundant,low cost,and have facile preparation,allowing scalable fabrication to fulfill the growing demand of susceptible sensor devices.Significant advances have been made in recent decades to design and fabricate various molybdenum oxides-and dichalcogenides-based sensing materials,though it is still challenging to achieve high performances.Therefore,many experimental and theoretical investigations have been devoted to exploring suitable approaches which can significantly enhance their gas sensing properties.This review comprehensively examines recent advanced strategies to improve the nanostructured molybdenum-based material performance for detecting harmful pollutants,dangerous gases,or even exhaled breath monitoring.The summary and future challenges to advance their gas sensing performances will also be presented.展开更多
Recently, two-dimensional monolayer molybdenum disulfide(MoS_2), a transition metal dichalcogenide, has received considerable attention due to its direct bandgap, which does not exist in its bulk form, enabling applic...Recently, two-dimensional monolayer molybdenum disulfide(MoS_2), a transition metal dichalcogenide, has received considerable attention due to its direct bandgap, which does not exist in its bulk form, enabling applications in optoelectronics and also thanks to its enhanced catalytic activity which allows it to be used for energy harvesting. However,growth of controllable and high-quality monolayers is still a matter of research and the parameters determining growth mechanism are not completely clear. In this work, chemical vapor deposition is utilized to grow monolayer MoS_2 flakes while deposition duration and temperature effect have been systematically varied to develop a better understanding of the MoS_2 film formation and the influence of these parameters on the quality of the monolayer flakes. Different from previous studies, SEM results show that single-layer MoS_2 flakes do not necessarily grow flat on the surface, but rather they can stay erect and inclined at different angles on the surface, indicating possible gas-phase reactions allowing for monolayer film formation. We have also revealed that process duration influences the amount of MoO_3/MoO_2 within the film network. The homogeneity and the number of layers depend on the change in the desorption–adsorption of radicals together with sulfurization rates, and, inasmuch, a careful optimization of parameters is crucial. Therefore, distinct from the general trend of MoS_2 monolayer formation, our films are rough and heterogeneous with monolayer MoS_2 nanowalls. Despite this roughness and the heterogeneity, we observe a strong photoluminescence located around 675 nm.展开更多
Ti_(3)C_(2)T_(x)MXene fiber has shown extraordinary potential for supercapacitor electrode in wearable elec-tronics and textile energy storage,but realizing high energy density and practical-powered applications remai...Ti_(3)C_(2)T_(x)MXene fiber has shown extraordinary potential for supercapacitor electrode in wearable elec-tronics and textile energy storage,but realizing high energy density and practical-powered applications remains a great challenge.Here,we report a covalent-architected molybdenum disulfide-Ti_(3)C_(2)T_(x)(MoS_(2)-Ti_(3)C_(2)T_(x))core-shell fiber for high-performance supercapacitor.Benefiting from the microfluidic and micro-reaction strategies,the ordered MoS_(2)arrays are strongly bridged on Ti_(3)C_(2)T_(x)fiber via Ti-O-Mo bond,re-sulting in large exposed surface,enhanced porosity and excellent interfacial conduction for charges high diffusion and faradaic transfer.The MoS_(2)-Ti_(3)C_(2)T_(x)fiber exhibits ultra-large capacitance of 2028 F cm^(-3)and admirable reversibility in 1 M H_(2)SO_(4)aqueous electrolyte.Meanwhile,MoS_(2)-Ti_(3)C_(2)T_(x)fiber-based solid-state supercapacitor presents high energy density of 23.86 mWh cm^(-3),capacitance of 1073.6 F cm^(-3)and superior cycling ability of 92.13%retention after 20,000 cycles,which can realize stable energy supply for wearable watch,LEDs,electric fans,toy ship and self-powered devices.Our work may provide an insight-ful guidance for the advanced design of structural fiber towards robust new energy and next-generation wearable industry.展开更多
Molybdenum disulfide(MoS_(2)),a typical two-dimensional transition metallic layered material,attracts tremendous attentions in the electrochemical energy storage due to its excellent physicochemical properties.However...Molybdenum disulfide(MoS_(2)),a typical two-dimensional transition metallic layered material,attracts tremendous attentions in the electrochemical energy storage due to its excellent physicochemical properties.However,with the deepening of the research and exploration of the lithium storage mechanism of these advanced MoS_(2)-based anode materials,the complex reaction process influenced by internal and external factors hinders the exhaustive understanding of the lithium storage process.To design stable anode material with high performance,it is urgent to review the mechanisms of reported anode materials and summarize the related factors that influence the reaction processes.This review aims to dissect all possible side reactions during charging and discharging process,uncover internal and external factors inducing various anode reactions and finally put forward strategies of controlling high cycling capacity and super-stable lithium storage capability of MoS_(2).This review will be helpful to the design of MoS_(2)-based lithium-ion batteries(LIBs) with excellent cycle performance to enlarge the application fields of these advanced electrochemical energy storage devices.展开更多
Two-dimensional (2D) layered transition metal dichalcogenide (TMD) materials (e.g., MoS2) have attracted considerable interest due to their atomically thin geometry and semiconducting electronic properties. With...Two-dimensional (2D) layered transition metal dichalcogenide (TMD) materials (e.g., MoS2) have attracted considerable interest due to their atomically thin geometry and semiconducting electronic properties. With ultrahigh surface to volume ratio, the electronic properties of these atomically thin semiconductors can be readily modulated by their environment. Here we report an investigation of the effects of mercury(II) (Hg^2+) ions on the electrical transport properties of few-layer molybdenum disulfide (MoS2). The interaction between Hg^2+ ions and few-layer MoS2 was studied by field-effect transistor measurements and photoluminescence. Due to a high binding affinity between Hg2. ions and the sulfur sites on the surface of MoS2 layers, Hg^2+ ions can strongly bind to MoS2. We show that the binding of Hg^2+ can produce a p-type doping effect to reduce the electron concentration in n-type few-layer MoS2. It can thus effectively modulate the electron transport and photoluminescence properties in few-layer MoS2. By monitoring the conductance change of few-layer MoS2 in varying concentration Hg2~ solutions, we further show that few-layer MoS2 transistors can function as highly sensitive sensors for rapid electrical detection of Hg^2+ ion with a detection limit of 30 pM.展开更多
基金the Outstanding Youth Project of Guangdong Provincial Natural Science Foundation,China(Grant No.2022B1515020020)the National Natural Science Foundation of China(Grant No.2225071013)+2 种基金the Guangdong Basic and Applied Basic Research Foundation,China(No.2022B1515120079)the Funding by Science and Technology Projects in Guangzhou,China(No.202206050003)the Guangdong Engineering Technology Research Center for Hydrogen Energy and Fuel Cells,China.
文摘The development of renewable and affordable energy is crucial for building a sustainable society. In this context, establishing a sustainable infrastructure for renewable energy requires the integration of energy storage, specifically use of renewable hydrogen. The hydrogen evolution reaction (HER) of electrochemical water splitting is a promising method for producing green hydrogen. Recently, two-dimensional nanomaterials have shown great promise in promoting the HER in terms of both fundamental research and practical applications due to their high specific surface areas and tunable electronic properties. Among them, molybdenum disulfide (MoS2), a non-noble metal catalyst, has emerged as a promising alternative to replace expensive platinum-based catalysts for the HER because MoS_(2)has a high inherent activity, low cost, and abundant reserves. At present, greatly improved activity and stability are urgently needed for MoS_(2)to enable wide deployment of water electrolysis devices. In this regard, efficient strategies for precisely modifying MoS_(2)are of interest. Herein, the progress made with MoS_(2)as an HER catalyst is reviewed, with a focus on modification strategies, including phase engineering, morphology design, defect engineering, heteroatom doping, and heterostructure construction. It is believed that these strategies will be helpful in designing and developing high-performance and low-cost MoS2-based catalysts by lowering the charge transfer barrier, increasing the active site density, and optimizing the surface hydrophilicity. In addition, the challenges of MoS_(2)electrocatalysts and perspectives for future research and development of these catalysts are discussed.
基金partly supported by the JSPS Grant-in-Aid for Scientific Research(No.JP16H06439,No.20H00297)by the Dynamic Alliance for Open Innovation Bridging Human,Environment and Materials in Network Joint Research Center for Materialsfinancial grants provided by Indonesia Ministry of Education,Culture,Research,and Technology,under the scheme of Basic Research Program No.2/E1/KP.PTNBH/2021 managed by Institut Teknologi Bandung。
文摘Molybdenum-based materials have been intensively investigated for high-performance gas sensor applications.Particularly,molybdenum oxides and dichalcogenides nanostructures have been widely examined due to their tunable structural and physicochemical properties that meet sensor requirements.These materials have good durability,are naturally abundant,low cost,and have facile preparation,allowing scalable fabrication to fulfill the growing demand of susceptible sensor devices.Significant advances have been made in recent decades to design and fabricate various molybdenum oxides-and dichalcogenides-based sensing materials,though it is still challenging to achieve high performances.Therefore,many experimental and theoretical investigations have been devoted to exploring suitable approaches which can significantly enhance their gas sensing properties.This review comprehensively examines recent advanced strategies to improve the nanostructured molybdenum-based material performance for detecting harmful pollutants,dangerous gases,or even exhaled breath monitoring.The summary and future challenges to advance their gas sensing performances will also be presented.
基金supported by Anadolu University BAP 1407F335 and BAP 1505F271 Projects
文摘Recently, two-dimensional monolayer molybdenum disulfide(MoS_2), a transition metal dichalcogenide, has received considerable attention due to its direct bandgap, which does not exist in its bulk form, enabling applications in optoelectronics and also thanks to its enhanced catalytic activity which allows it to be used for energy harvesting. However,growth of controllable and high-quality monolayers is still a matter of research and the parameters determining growth mechanism are not completely clear. In this work, chemical vapor deposition is utilized to grow monolayer MoS_2 flakes while deposition duration and temperature effect have been systematically varied to develop a better understanding of the MoS_2 film formation and the influence of these parameters on the quality of the monolayer flakes. Different from previous studies, SEM results show that single-layer MoS_2 flakes do not necessarily grow flat on the surface, but rather they can stay erect and inclined at different angles on the surface, indicating possible gas-phase reactions allowing for monolayer film formation. We have also revealed that process duration influences the amount of MoO_3/MoO_2 within the film network. The homogeneity and the number of layers depend on the change in the desorption–adsorption of radicals together with sulfurization rates, and, inasmuch, a careful optimization of parameters is crucial. Therefore, distinct from the general trend of MoS_2 monolayer formation, our films are rough and heterogeneous with monolayer MoS_2 nanowalls. Despite this roughness and the heterogeneity, we observe a strong photoluminescence located around 675 nm.
基金This work was financially supported by the National Natu-ral Science Foundation of China(Nos.22278378,22208190,and 21706120)the Natural Science Foundation of Jiangsu Province(No.BK20211592)+2 种基金the National Postdoctoral Program for Innovative Tal-ents(No.BX2021146)the Shuimu Tsinghua Scholar Program(No.2021SM055)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Ti_(3)C_(2)T_(x)MXene fiber has shown extraordinary potential for supercapacitor electrode in wearable elec-tronics and textile energy storage,but realizing high energy density and practical-powered applications remains a great challenge.Here,we report a covalent-architected molybdenum disulfide-Ti_(3)C_(2)T_(x)(MoS_(2)-Ti_(3)C_(2)T_(x))core-shell fiber for high-performance supercapacitor.Benefiting from the microfluidic and micro-reaction strategies,the ordered MoS_(2)arrays are strongly bridged on Ti_(3)C_(2)T_(x)fiber via Ti-O-Mo bond,re-sulting in large exposed surface,enhanced porosity and excellent interfacial conduction for charges high diffusion and faradaic transfer.The MoS_(2)-Ti_(3)C_(2)T_(x)fiber exhibits ultra-large capacitance of 2028 F cm^(-3)and admirable reversibility in 1 M H_(2)SO_(4)aqueous electrolyte.Meanwhile,MoS_(2)-Ti_(3)C_(2)T_(x)fiber-based solid-state supercapacitor presents high energy density of 23.86 mWh cm^(-3),capacitance of 1073.6 F cm^(-3)and superior cycling ability of 92.13%retention after 20,000 cycles,which can realize stable energy supply for wearable watch,LEDs,electric fans,toy ship and self-powered devices.Our work may provide an insight-ful guidance for the advanced design of structural fiber towards robust new energy and next-generation wearable industry.
基金financially supported by the National Funds for Distinguished Young Scientists (No. 61825503)the National Natural Science Foundation of China (Nos. 51902101, 61775101,61804082)+3 种基金the Youth Natural Science Foundation of Hunan Province (No. 2019JJ50044)Natural Science Foundation of Jiangsu Province (No. BK20201381)Science Foundation of Nanjing University of Posts and Telecommunications (No. NY219144)China Postdoctoral Science Foundation (Nos. 2020TQ0202, 2021M692161)。
文摘Molybdenum disulfide(MoS_(2)),a typical two-dimensional transition metallic layered material,attracts tremendous attentions in the electrochemical energy storage due to its excellent physicochemical properties.However,with the deepening of the research and exploration of the lithium storage mechanism of these advanced MoS_(2)-based anode materials,the complex reaction process influenced by internal and external factors hinders the exhaustive understanding of the lithium storage process.To design stable anode material with high performance,it is urgent to review the mechanisms of reported anode materials and summarize the related factors that influence the reaction processes.This review aims to dissect all possible side reactions during charging and discharging process,uncover internal and external factors inducing various anode reactions and finally put forward strategies of controlling high cycling capacity and super-stable lithium storage capability of MoS_(2).This review will be helpful to the design of MoS_(2)-based lithium-ion batteries(LIBs) with excellent cycle performance to enlarge the application fields of these advanced electrochemical energy storage devices.
文摘Two-dimensional (2D) layered transition metal dichalcogenide (TMD) materials (e.g., MoS2) have attracted considerable interest due to their atomically thin geometry and semiconducting electronic properties. With ultrahigh surface to volume ratio, the electronic properties of these atomically thin semiconductors can be readily modulated by their environment. Here we report an investigation of the effects of mercury(II) (Hg^2+) ions on the electrical transport properties of few-layer molybdenum disulfide (MoS2). The interaction between Hg^2+ ions and few-layer MoS2 was studied by field-effect transistor measurements and photoluminescence. Due to a high binding affinity between Hg2. ions and the sulfur sites on the surface of MoS2 layers, Hg^2+ ions can strongly bind to MoS2. We show that the binding of Hg^2+ can produce a p-type doping effect to reduce the electron concentration in n-type few-layer MoS2. It can thus effectively modulate the electron transport and photoluminescence properties in few-layer MoS2. By monitoring the conductance change of few-layer MoS2 in varying concentration Hg2~ solutions, we further show that few-layer MoS2 transistors can function as highly sensitive sensors for rapid electrical detection of Hg^2+ ion with a detection limit of 30 pM.