期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Moment Identities for Skorohod Integrals on Guichardet-Fock Spaces
1
作者 Jihong Zhang Yongjun Li Xiaochun Sun 《Journal of Applied Mathematics and Physics》 2016年第7期1311-1314,共4页
In this paper, we define expectation of f∈E, i.e. E(f)=f(?), accordingto Wiener-Ito-Segal isomorphic relation between Guichardet-Fock space F and Wienerspace W. Meanwhile, we prove a moment identity for the Skorohod ... In this paper, we define expectation of f∈E, i.e. E(f)=f(?), accordingto Wiener-Ito-Segal isomorphic relation between Guichardet-Fock space F and Wienerspace W. Meanwhile, we prove a moment identity for the Skorohod integrals aboutvacuum state. 展开更多
关键词 moment identities Skorohod Integral Guichardet-Fock Spaces
下载PDF
Skorohod Integral at Vacuum State on Guichardet-Fock Spaces
2
作者 Jihong Zhang Yongjun Li Xiaochun Sun 《Journal of Applied Mathematics and Physics》 2016年第7期1321-1326,共6页
In this paper, we define expectation of f∈F, i.e. E(f)=f(?), according to Wiener-Ito-Segal isomorphic relation between Guichardet-Fock space F and Wienerspace W. Meanwhile, we derive a formula for the expectation of ... In this paper, we define expectation of f∈F, i.e. E(f)=f(?), according to Wiener-Ito-Segal isomorphic relation between Guichardet-Fock space F and Wienerspace W. Meanwhile, we derive a formula for the expectation of random Hermite polynomial in Skorohod integral on Guichardet- Fock spaces. In particular, we prove that the anticipative Girsanov identities under the condition E(H<sub>x</sub>(δ(x),‖x‖<sup>2</sup>)),n≥1 on Guichardet-Fock spaces. 展开更多
关键词 moment identities Girsanov identities Hermitpolynomial Skorohod Integral Guichardet-Fock Spaces
下载PDF
Circular β ensembles,CMV representation,characteristic polynomials 被引量:1
3
作者 SU ZhongGen Department of Mathematics,Zhejiang University,Hangzhou 310027,China 《Science China Mathematics》 SCIE 2009年第7期1467-1477,共11页
In this note we first briefly review some recent progress in the study of the circular β ensemble on the unit circle,where β > 0 is a model parameter.In the special cases β = 1,2 and 4,this ensemble describes th... In this note we first briefly review some recent progress in the study of the circular β ensemble on the unit circle,where β > 0 is a model parameter.In the special cases β = 1,2 and 4,this ensemble describes the joint probability density of eigenvalues of random orthogonal,unitary and sympletic matrices,respectively.For general β,Killip and Nenciu discovered a five-diagonal sparse matrix model,the CMV representation.This representation is new even in the case β = 2;and it has become a powerful tool for studying the circular β ensemble.We then give an elegant derivation for the moment identities of characteristic polynomials via the link with orthogonal polynomials on the unit circle. 展开更多
关键词 characteristic polynomials circular β ensembles CMV representation moment identity 15A52
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部