With the notion of independent identically distributed(IID) random variables under sublinear expectations introduced by Peng,we investigate moment bounds for IID sequences under sublinear expectations. We obtain a mom...With the notion of independent identically distributed(IID) random variables under sublinear expectations introduced by Peng,we investigate moment bounds for IID sequences under sublinear expectations. We obtain a moment inequality for a sequence of IID random variables under sublinear expectations. As an application of this inequality,we get the following result:For any continuous functionsatisfying the growth condition |(x) | C(1 + |x|p) for some C > 0,p 1 depending on ,the central limit theorem under sublinear expectations obtained by Peng still holds.展开更多
The main goal of the present work is a unitary approach of the physical origin of the corrections to the magnetic moment of free and bound electron. Based on this approach, estimations of lowest order corrections were...The main goal of the present work is a unitary approach of the physical origin of the corrections to the magnetic moment of free and bound electron. Based on this approach, estimations of lowest order corrections were easily obtained. In the non-relativistic limit, the Dirac electron appears as a distribution of charge and current extended over a region of linear dimension of the order of Compton wavelength, which generates its magnetic moment. The e.m. mass (self-energy) of electron outside this region does not participate to this internal dynamics, and consequently does not contribute to the mass term in the formula of the magnetic moment. This is the physical origin of the small increase of the magnetic moment of free electron compared to the value given by Dirac equation. We give arguments that this physical interpretation is self-consistent with the QED approach. The bound electron being localized, it has kinetic energy which means a mass increase from a relativistic point of view, which determines a magnetic moment decrease (relativistic Breit correction). On the other hand, the e.m. mass of electron decreases at the formation of the bound state due to coulomb interaction with the nucleus. We estimated this e.m. mass decrease of bound electron only in its internal dynamics region, and from it the corresponding increase of the magnetic moment (QED correction). The corrections to the mass value are at the origin of the lowest order corrections to the magnetic moment of free and bound electron.展开更多
This article attempts to give a short survey of recent progress on a class of elementary stochastic partial differential equations (for example, stochastic heat equations) driven by Gaussian noise of various covarianc...This article attempts to give a short survey of recent progress on a class of elementary stochastic partial differential equations (for example, stochastic heat equations) driven by Gaussian noise of various covariance structures. The focus is on the existence and uniqueness of the classical (square integrable) solution (mild solution, weak solution). It is also concerned with the Feynman-Kac formula for the solution;Feynman-Kac formula for the moments of the solution;and their applications to the asymptotic moment bounds of the solution. It also briefly touches the exact asymptotics of the moments of the solution.展开更多
This paper provides necessary as well as sufficient conditions on the Hurst parameters so that the continuous time parabolic Anderson model ∂u/∂t=1/2△+u˙W on[0,∞)×R^(d) with d≥1 has a unique randomfield solutio...This paper provides necessary as well as sufficient conditions on the Hurst parameters so that the continuous time parabolic Anderson model ∂u/∂t=1/2△+u˙W on[0,∞)×R^(d) with d≥1 has a unique randomfield solution,where W(t,x)is a fractional Brownian sheet on[0,∞)×Rd and formally ˙W=∂d+1/∂t+∂x_(1)…∂x_(d)=W(t,x).When the noise W(t,x) is white in time,our condition is both necessary and sufficient when the initial data u(0,x)is bounded between two positive constants.When the noise is fractional in time with Hurst parameter H_(0)>1/2,our sufficient condition,which improves the known results in the literature,is different from the necessary one.展开更多
基金supported in part by National Basic Research Program of China (973 Program) (Grant No. 2007CB814901)the Natural Science Foundation of Shandong Province (Grant No. ZR2009AL015)
文摘With the notion of independent identically distributed(IID) random variables under sublinear expectations introduced by Peng,we investigate moment bounds for IID sequences under sublinear expectations. We obtain a moment inequality for a sequence of IID random variables under sublinear expectations. As an application of this inequality,we get the following result:For any continuous functionsatisfying the growth condition |(x) | C(1 + |x|p) for some C > 0,p 1 depending on ,the central limit theorem under sublinear expectations obtained by Peng still holds.
文摘The main goal of the present work is a unitary approach of the physical origin of the corrections to the magnetic moment of free and bound electron. Based on this approach, estimations of lowest order corrections were easily obtained. In the non-relativistic limit, the Dirac electron appears as a distribution of charge and current extended over a region of linear dimension of the order of Compton wavelength, which generates its magnetic moment. The e.m. mass (self-energy) of electron outside this region does not participate to this internal dynamics, and consequently does not contribute to the mass term in the formula of the magnetic moment. This is the physical origin of the small increase of the magnetic moment of free electron compared to the value given by Dirac equation. We give arguments that this physical interpretation is self-consistent with the QED approach. The bound electron being localized, it has kinetic energy which means a mass increase from a relativistic point of view, which determines a magnetic moment decrease (relativistic Breit correction). On the other hand, the e.m. mass of electron decreases at the formation of the bound state due to coulomb interaction with the nucleus. We estimated this e.m. mass decrease of bound electron only in its internal dynamics region, and from it the corresponding increase of the magnetic moment (QED correction). The corrections to the mass value are at the origin of the lowest order corrections to the magnetic moment of free and bound electron.
基金supported by an NSERC granta startup fund of University of Alberta
文摘This article attempts to give a short survey of recent progress on a class of elementary stochastic partial differential equations (for example, stochastic heat equations) driven by Gaussian noise of various covariance structures. The focus is on the existence and uniqueness of the classical (square integrable) solution (mild solution, weak solution). It is also concerned with the Feynman-Kac formula for the solution;Feynman-Kac formula for the moments of the solution;and their applications to the asymptotic moment bounds of the solution. It also briefly touches the exact asymptotics of the moments of the solution.
基金supported in part by a Simons Foundation GrantThe research of YH is supported in part by an NSERC Discovery grant and a startup fund from University of Alberta at Edmonton.
文摘This paper provides necessary as well as sufficient conditions on the Hurst parameters so that the continuous time parabolic Anderson model ∂u/∂t=1/2△+u˙W on[0,∞)×R^(d) with d≥1 has a unique randomfield solution,where W(t,x)is a fractional Brownian sheet on[0,∞)×Rd and formally ˙W=∂d+1/∂t+∂x_(1)…∂x_(d)=W(t,x).When the noise W(t,x) is white in time,our condition is both necessary and sufficient when the initial data u(0,x)is bounded between two positive constants.When the noise is fractional in time with Hurst parameter H_(0)>1/2,our sufficient condition,which improves the known results in the literature,is different from the necessary one.