In this paper, we consider whether the random effect exists in linear mixed models (LMMs) when only moment conditions are assumed. Based on the estimators of parameters and their asymptotic properties, a Wald-type t...In this paper, we consider whether the random effect exists in linear mixed models (LMMs) when only moment conditions are assumed. Based on the estimators of parameters and their asymptotic properties, a Wald-type test is constructed. It is consistent against global alternatives and is sensitive to the local alternatives converging to the null hypothesis at parametric rates, a fastest possibly rate for goodness-of-fit testing. Moreover, a simulation study shows the performance of the test is good. The procedure also applies to a real data.展开更多
The edges between vertices in networks take not only the common binary values, but also the ordered values in some situations(e.g., the measurement of the relationship between people from worst to best in social netwo...The edges between vertices in networks take not only the common binary values, but also the ordered values in some situations(e.g., the measurement of the relationship between people from worst to best in social networks). In this paper, the authors study the asymptotic property of the moment estimator based on the degrees of vertices in ordered networks whose edges are ordered random variables. In particular, the authors establish the uniform consistency and the asymptotic normality of the moment estimator when the number of parameters goes to infinity. Simulations and a real data example are provided to illustrate asymptotic results.展开更多
Linear mixed models (LMMs) have become an important statistical method for analyzing cluster or longitudinal data. In most cases, it is assumed that the distributions of the random effects and the errors are normal....Linear mixed models (LMMs) have become an important statistical method for analyzing cluster or longitudinal data. In most cases, it is assumed that the distributions of the random effects and the errors are normal. This paper removes this restrictions and replace them by the moment conditions. We show that the least square estimators of fixed effects are consistent and asymptotically normal in general LMMs. A closed-form estimator of the covariance matrix for the random effect is constructed and its consistent is shown. Based on this, the consistent estimate for the error variance is also obtained. A simulation study and a real data analysis show that the procedure is effective.展开更多
基金Supported by a grant (HKBU2030/07P) from the Research Grants Council of Hong Kongthe National Natural Science Foundation of China (Grant No. 10871001)+2 种基金the Humanities and Social Sciences Project of Chinese Ministry of Education (Grant No. 08JC910002)Zhejiang Provincial Natural Science Foundation of China (Grant No. Y6090172)Youth Talent Foundation of Zhejiang Gongshang University, China
文摘In this paper, we consider whether the random effect exists in linear mixed models (LMMs) when only moment conditions are assumed. Based on the estimators of parameters and their asymptotic properties, a Wald-type test is constructed. It is consistent against global alternatives and is sensitive to the local alternatives converging to the null hypothesis at parametric rates, a fastest possibly rate for goodness-of-fit testing. Moreover, a simulation study shows the performance of the test is good. The procedure also applies to a real data.
基金supported by the National Natural Science Foundation of China under Grant Nos.11271147,11471135partially supported by the National Natural Science Foundation of China under Grant No.11401239+1 种基金Funds of CCNU from the Colleges’s Basic Research and Operation of MOE(CCNU15A02032,CCNU15ZD011)a Fund from KLAS(130026507)
文摘The edges between vertices in networks take not only the common binary values, but also the ordered values in some situations(e.g., the measurement of the relationship between people from worst to best in social networks). In this paper, the authors study the asymptotic property of the moment estimator based on the degrees of vertices in ordered networks whose edges are ordered random variables. In particular, the authors establish the uniform consistency and the asymptotic normality of the moment estimator when the number of parameters goes to infinity. Simulations and a real data example are provided to illustrate asymptotic results.
基金Supported by the National Natural Science Foundation of China (No. 11001267)the Fundamental Research Funds for the Central Universities in China (No. 2009QS02)Supported by the National Natural Science Foundation of China (No. 10701079, 10871001)
文摘Linear mixed models (LMMs) have become an important statistical method for analyzing cluster or longitudinal data. In most cases, it is assumed that the distributions of the random effects and the errors are normal. This paper removes this restrictions and replace them by the moment conditions. We show that the least square estimators of fixed effects are consistent and asymptotically normal in general LMMs. A closed-form estimator of the covariance matrix for the random effect is constructed and its consistent is shown. Based on this, the consistent estimate for the error variance is also obtained. A simulation study and a real data analysis show that the procedure is effective.