Image recognition is widely used in different application areas such as shape recognition, gesture recognition and eye recognition. In this research, we introduced image recognition using efficient invariant moments a...Image recognition is widely used in different application areas such as shape recognition, gesture recognition and eye recognition. In this research, we introduced image recognition using efficient invariant moments and Principle Component Analysis (PCA) for gray and color images using different number of invariant moments. We used twelve moments for each image of gray images and Hu’s seven moments for color images to decrease dimensionality of the problem to 6 PCA’s for gray and 5 PCA’s for color images and hence the recognition time. PCA is then employed to decrease dimensionality of the problem and hence the recognition time and this is our main objective. The PCA is derived from Karhunen-Loeve’s transformation. Given an N-dimensional vector representation of each image, PCA tends to find a K-dimensional subspace whose basis vectors correspond to the maximum variance direction in the original image space. This new subspace is normally lower dimensional (K N). Three known datasets are used. The first set is the known Flower dataset. The second is the Africans dataset, and the third is the Shapes dataset. All these datasets were used by many researchers.展开更多
In order to discover characteristics of various kinds of weld pool image and identify a single image, seven image features are extracted to describe the corresponding surface formation quality by the moment iavariants...In order to discover characteristics of various kinds of weld pool image and identify a single image, seven image features are extracted to describe the corresponding surface formation quality by the moment iavariants method. An image feature matrix is composed by the seven characteristics. Then the matrix is projected on a line through the Fisher criterion in order to entirely distinguish various kinds of image features. And finally, transforming a seven-dimensional problem into a one-dimensional problem has been done. Compared with the three kinds of samples included in the arc welding process and quality weld pool visual image database, the images are classified into the three kinds such as superior weld formation in the condition of optimal gas flow, poor weld formation image in the condition of insuffwient gas flow, inferior weld formation in the condition of too low gas flow. Experiments show that the Fisher classification method based on moment invariants can recognize various weld pool images effectively, and it achieves a correct recognizable rate of 100%.展开更多
In this paper, we propose a new method that combines collage error in fractal domain and Hu moment invariants for image retrieval with a statistical method - variable bandwidth Kernel Density Estimation (KDE). The pro...In this paper, we propose a new method that combines collage error in fractal domain and Hu moment invariants for image retrieval with a statistical method - variable bandwidth Kernel Density Estimation (KDE). The proposed method is called CHK (KDE of Collage error and Hu moment) and it is tested on the Vistex texture database with 640 natural images. Experimental results show that the Average Retrieval Rate (ARR) can reach into 78.18%, which demonstrates that the proposed method performs better than the one with parameters respectively as well as the commonly used histogram method both on retrieval rate and retrieval time.展开更多
In this paper,we advanced a new fast algorithm of 2-D moment in-variant based on image projection,by means of projection transformation it can com-press the information of a 2-D image into 1-D information.Thus,the amo...In this paper,we advanced a new fast algorithm of 2-D moment in-variant based on image projection,by means of projection transformation it can com-press the information of a 2-D image into 1-D information.Thus,the amount ofcomputation and data size are decreased greatly and,moreover,the projection trans-formation,which is merely an operation of additions,is easier to be achieved onhardwares.The results of computer simulation proved the correctness and quicknessof our method.展开更多
In this paper,we first derive two types of transformed Franklin polynomial:substituted and weighted radial Franklin polynomials.Two radial orthogonal moments are proposed based on these two types of polynomials,namely...In this paper,we first derive two types of transformed Franklin polynomial:substituted and weighted radial Franklin polynomials.Two radial orthogonal moments are proposed based on these two types of polynomials,namely substituted Franklin-Fourier moments and weighted Franklin-Fourier moments(SFFMs and WFFMs),which are orthogonal in polar coordinates.The radial kernel functions of SFFMs and WFFMs are transformed Franklin functions and Franklin functions are composed of a class of complete orthogonal splines function system of degree one.Therefore,it provides the possibility of avoiding calculating high order polynomials,and thus the accurate values of SFFMs and WFFMs can be obtained directly with little computational cost.Theoretical and experimental results show that Franklin functions are not well suited for constructing higher-order moments of SFFMs and WFFMs,but compared with traditional orthogonal moments(e.g.,BFMs,OFMs and ZMs)in polar coordinates,the proposed two types of Franklin-Fourier Moments have better performance respectively in lower-order moments.展开更多
Moment invariants firstly introduced by M. K Hu in 1962, has some shortcomings. After counting a large number of statistical distribution information of Chinese characters,the authors put forward the concept of inform...Moment invariants firstly introduced by M. K Hu in 1962, has some shortcomings. After counting a large number of statistical distribution information of Chinese characters,the authors put forward the concept of information moments and demonstrate its invariance to translation,rotation and scaling.Also they perform the experiment in which information moments compared with moment invaiants for the effects of similar Chinese characters and font recognition.At last they show the recognition rate of 88% by information moments,with 70% by moment inariants.展开更多
Recently, orthogonal moments have become efficient tools for two-dimensional and three-dimensional(2D and 3D) image not only in pattern recognition, image vision, but also in image processing and applications engine...Recently, orthogonal moments have become efficient tools for two-dimensional and three-dimensional(2D and 3D) image not only in pattern recognition, image vision, but also in image processing and applications engineering. Yet, there is still a major difficulty in 3D rotation invariants. In this paper, we propose new sets of invariants for 2D and 3D rotation, scaling and translation based on orthogonal radial Hahn moments. We also present theoretical mathematics to derive them. Thus, this paper introduces in the first case new 2D radial Hahn moments based on polar representation of an object by one-dimensional orthogonal discrete Hahn polynomials, and a circular function. In the second case, we present new 3D radial Hahn moments using a spherical representation of volumetric image by one-dimensional orthogonal discrete Hahn polynomials and a spherical function. Further 2D and 3D invariants are derived from the proposed 2D and 3D radial Hahn moments respectively, which appear as the third case. In order to test the proposed approach, we have resolved three issues: the image reconstruction, the invariance of rotation, scaling and translation, and the pattern recognition. The result of experiments show that the Hahn moments have done better than the Krawtchouk moments, with and without noise. Simultaneously, the mentioned reconstruction converges quickly to the original image using 2D and 3D radial Hahn moments, and the test images are clearly recognized from a set of images that are available in COIL-20 database for 2D image, and Princeton shape benchmark(PSB) database for 3D image.展开更多
Image moments have been used in many research fields of the engineering. However, the related computation of invariant moments mostly adopted the polar coordinate system, which not only increase the computational load...Image moments have been used in many research fields of the engineering. However, the related computation of invariant moments mostly adopted the polar coordinate system, which not only increase the computational load, but also cause large quantized error. To solve this problem, an improved algorithm to compute Pseudo-Jacobi-Fourier moments in the Cartesian coordinate system is proposed in this paper. The experimental results show that the reconstructed image with improved PJFM’s has more advantages than polar coordinate system, such as more information, fewer moments, less time consuming. And the recognition rate of the microscopic images of 8 helminth eggs was also higher than in polar coordinate system.展开更多
Quality inspection of a PCB (Printed Circuit Board) always requires us to stitch some separated images into an integral one. However, during image acquisition, some environmental influences such as vibration, noise ...Quality inspection of a PCB (Printed Circuit Board) always requires us to stitch some separated images into an integral one. However, during image acquisition, some environmental influences such as vibration, noise and illumination will cause image degradation. An efficient image mosaic method has been urgently required to obtain a high-quality PCB panorama. Hence, an image mosaic method based on Gaussian-Hermite moments is presented in this paper. The characteristic points in the neighborhood of a PCB are represented by Gaussian-Hermite moment in- variants. They are characterized by independence to translation or rotation transformations. Meanwhile, such feature representation shows better noise robustness. Experimental results show that the proposed method produces a qualified mosaic of PCB image.展开更多
Wavelet moment invariants are constructed for object recognition based on the global feature and local feature of target, which are brought for the simple background of the underwater objects, complex structure, simil...Wavelet moment invariants are constructed for object recognition based on the global feature and local feature of target, which are brought for the simple background of the underwater objects, complex structure, similar form etc. These invariant features realize the multi-dimension feature extraction of local topology and in- variant transform. Considering translation and scale invariant characteristics were ignored by conventional wavelet moments, some improvements were done in this paper. The cubic B-spline wavelets which are optimally localized in space-frequency and close to the forms of Li's(or Zernike's) polynomial moments were applied for calculating the wavelet moments. To testify superiority of the wavelet moments mentioned in this paper, generalized regres- sion neural network(GRNN) was used to calculate the recognition rates based on wavelet invariant moments and conventional invariant moments respectively. Wavelet moments obtained 100% recognition rate for every object and the conventional moments obtained less classification rate. The result shows that wavelet moment has the ability to identify many types of objects and is suitable for laser image recognition.展开更多
In this paper, illumination-affine invariant methods are presented based onaffine moment normalization techniques, Zernike moments, and multiband correlation functions. Themethods are suitable for the illumination inv...In this paper, illumination-affine invariant methods are presented based onaffine moment normalization techniques, Zernike moments, and multiband correlation functions. Themethods are suitable for the illumination invariant recognition of 3D color texture. Complex valuedmoments (i.e., Zernike moments) and affine moment normalization are used in the derivation ofillumination affine invariants where the real valued affine moment invariants fail to provide affineinvariants that are independent of illumination changes. Three different moment normalizationmethods have been used, two of which are based on affine moment normalization technique and thethird is based on reducing the affine transformation to a Euclidian transform. It is shown that fora change of illumination and orientation, the affinely normalized Zernike moment matrices arerelated by a linear transform. Experimental results are obtained in two tests: the first is usedwith textures of outdoor scenes while the second is performed on the well-known CUReT texturedatabase. Both tests show high recognition efficiency of the proposed recognition methods.展开更多
A novel algorithm is presented to make the results of image matching more reliable and accurate based on SIFT (Scale Invariant Feature Transform). SIFT algorithm has been identified as the most resistant matching algo...A novel algorithm is presented to make the results of image matching more reliable and accurate based on SIFT (Scale Invariant Feature Transform). SIFT algorithm has been identified as the most resistant matching algorithm to common image deformations; however, if there are similar regions in images, SIFT algorithm still generates some analogical descriptors and provides many mismatches. This paper examines the local image descriptor used by SIFT and presents a new algorithm by integrating SIFT with two-dimensional moment invariants and disparity gradient to improve the matching results. In the new algorithm, decision tree is used, and the whole matching process is divided into three levels with different primitives. Matching points are considered as correct ones only when they satisfy all the three similarity measurements. Experiment results demonstrate that the new approach is more reliable and accurate.展开更多
To protect the copyright of the image as well as the image quality, a kind of image zero-watermark method based on the Krawtchouk moment invariants and timestamp is proposed. A method is used to protect the image, in ...To protect the copyright of the image as well as the image quality, a kind of image zero-watermark method based on the Krawtchouk moment invariants and timestamp is proposed. A method is used to protect the image, in which features are drawn out from the image as the watermarking. The main steps of the method are presented. Firstly, some low-order moment invariants of the image are extracted. Secondly, the moment invariants and the key are registered to a fair third party to gain the timestamp. Finally, the timestamp can be used to prove who the real owner is. The processing method is simple, only with a few low-order moment invariants to be computed. Experimental results are obtained and compared with those of the method based on geometric moment invariants. Results show that the scheme can well withstand such geometrical attacks as rotating, scaling, cropping, combined attack, translating, removing lines, filtering, and JPEG lossy compression.展开更多
This paper proposes a new set of 3D rotation scaling and translation invariants of 3D radially shifted Legendre moments. We aim to develop two kinds of transformed shifted Legendre moments: a 3D substituted radial sh...This paper proposes a new set of 3D rotation scaling and translation invariants of 3D radially shifted Legendre moments. We aim to develop two kinds of transformed shifted Legendre moments: a 3D substituted radial shifted Legendre moments (3DSRSLMs) and a 3D weighted radial one (3DWRSLMs). Both are centered on two types of polynomials. In the first case, a new 3D ra- dial complex moment is proposed. In the second case, new 3D substituted/weighted radial shifted Legendremoments (3DSRSLMs/3DWRSLMs) are introduced using a spherical representation of volumetric image. 3D invariants as derived from the sug- gested 3D radial shifted Legendre moments will appear in the third case. To confirm the proposed approach, we have resolved three is- sues. To confirm the proposed approach, we have resolved three issues: rotation, scaling and translation invariants. The result of experi- ments shows that the 3DSRSLMs and 3DWRSLMs have done better than the 3D radial complex moments with and without noise. Sim- ultaneously, the reconstruction converges rapidly to the original image using 3D radial 3DSRSLMs and 3DWRSLMs, and the test of 3D images are clearly recognized from a set of images that are available in Princeton shape benchmark (PSB) database for 3D image.展开更多
Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa l...Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa logo at the corner or diagonal text in the background. However, this formof visible watermarking is not suitable for a large class of applications. In allsuch cases, a hidden watermark is embedded inside the original image as proofof ownership. A large number of techniques and algorithms are proposedby researchers for invisible watermarking. In this paper, we focus on issuesthat are critical for security aspects in the most common domains like digitalphotography copyrighting, online image stores, etc. The requirements of thisclass of application include robustness (resistance to attack), blindness (directextraction without original image), high embedding capacity, high Peak Signalto Noise Ratio (PSNR), and high Structural Similarity Matrix (SSIM). Mostof these requirements are conflicting, which means that an attempt to maximizeone requirement harms the other. In this paper, a blind type of imagewatermarking scheme is proposed using Lifting Wavelet Transform (LWT)as the baseline. Using this technique, custom binary watermarks in the formof a binary string can be embedded. Hu’s Invariant moments’ coefficientsare used as a key to extract the watermark. A Stochastic variant of theFirefly algorithm (FA) is used for the optimization of the technique. Undera prespecified size of embedding data, high PSNR and SSIM are obtainedusing the Stochastic Gradient variant of the Firefly technique. The simulationis done using Matrix Laboratory (MATLAB) tool and it is shown that theproposed technique outperforms the benchmark techniques of watermarkingconsidering PSNR and SSIM as quality metrics.展开更多
Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new meth...Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new method based on virtual model and invariant moments was proposed to generate training samples.The method was composed of the following steps:use computer and simulation software to build target object's virtual model and then simulate the environment,light condition,camera parameter,etc.;rotate the model by spin and nutation of inclination to get the image sequence by virtual camera;preprocess each image and transfer them into binary image;calculate the invariant moments for each image and get a vectors' sequence.The vectors' sequence which was proved to be complete became the training samples together with the target outputs.The simulated results showed that the proposed method could be used to recognize the real targets and improve the accuracy of target recognition effectively when the sampling interval was short enough and the circumstance simulation was close enough.展开更多
Developing a watermarking method that is robust to cropping attack is a challenging task in image watermarking. The moment-based watermarking schemes show good robustness to common signal processing attacks and some g...Developing a watermarking method that is robust to cropping attack is a challenging task in image watermarking. The moment-based watermarking schemes show good robustness to common signal processing attacks and some geometric attacks but are sensitive to cropping attack. In this paper, we modify the moment-based approach to deal with cropping attack. Firstly, we find the probability density function (PDF) of the pixel value distribution from the original image. Secondly, we reshape and normalize the pdf of the pixel value distribution (PPVD) to form a two dimensional image. Then, the moment invariants are calculated from the PPVD image. Since PPVD is insensitive to cropping, the proposed method is robust to cropping attack. Besides, it also has high robustness against other common attacks. Theoretical analysis and experimental results demonstrate the effectiveness of the proposed method.展开更多
文摘Image recognition is widely used in different application areas such as shape recognition, gesture recognition and eye recognition. In this research, we introduced image recognition using efficient invariant moments and Principle Component Analysis (PCA) for gray and color images using different number of invariant moments. We used twelve moments for each image of gray images and Hu’s seven moments for color images to decrease dimensionality of the problem to 6 PCA’s for gray and 5 PCA’s for color images and hence the recognition time. PCA is then employed to decrease dimensionality of the problem and hence the recognition time and this is our main objective. The PCA is derived from Karhunen-Loeve’s transformation. Given an N-dimensional vector representation of each image, PCA tends to find a K-dimensional subspace whose basis vectors correspond to the maximum variance direction in the original image space. This new subspace is normally lower dimensional (K N). Three known datasets are used. The first set is the known Flower dataset. The second is the Africans dataset, and the third is the Shapes dataset. All these datasets were used by many researchers.
基金Fund projects: National Natural Science Foundation of China( No 51075214)funding.
文摘In order to discover characteristics of various kinds of weld pool image and identify a single image, seven image features are extracted to describe the corresponding surface formation quality by the moment iavariants method. An image feature matrix is composed by the seven characteristics. Then the matrix is projected on a line through the Fisher criterion in order to entirely distinguish various kinds of image features. And finally, transforming a seven-dimensional problem into a one-dimensional problem has been done. Compared with the three kinds of samples included in the arc welding process and quality weld pool visual image database, the images are classified into the three kinds such as superior weld formation in the condition of optimal gas flow, poor weld formation image in the condition of insuffwient gas flow, inferior weld formation in the condition of too low gas flow. Experiments show that the Fisher classification method based on moment invariants can recognize various weld pool images effectively, and it achieves a correct recognizable rate of 100%.
基金Supported by the Fundamental Research Funds for the Central Universities (No. NS2012093)
文摘In this paper, we propose a new method that combines collage error in fractal domain and Hu moment invariants for image retrieval with a statistical method - variable bandwidth Kernel Density Estimation (KDE). The proposed method is called CHK (KDE of Collage error and Hu moment) and it is tested on the Vistex texture database with 640 natural images. Experimental results show that the Average Retrieval Rate (ARR) can reach into 78.18%, which demonstrates that the proposed method performs better than the one with parameters respectively as well as the commonly used histogram method both on retrieval rate and retrieval time.
文摘In this paper,we advanced a new fast algorithm of 2-D moment in-variant based on image projection,by means of projection transformation it can com-press the information of a 2-D image into 1-D information.Thus,the amount ofcomputation and data size are decreased greatly and,moreover,the projection trans-formation,which is merely an operation of additions,is easier to be achieved onhardwares.The results of computer simulation proved the correctness and quicknessof our method.
基金supported by the National Natural Science Foundation of China(61572092,61702403)the Fundamental Research Funds for the Central Universities(JB170308,JBF180301)+2 种基金the Project Funded by China Postdoctoral Science Foundation(2018M633473)the Basic Research Project of Weinan Science and Technology Bureau(ZDYF-JCYJ-17)the Project of Shaanxi Provincial Supports Discipline(Mathematics)
文摘In this paper,we first derive two types of transformed Franklin polynomial:substituted and weighted radial Franklin polynomials.Two radial orthogonal moments are proposed based on these two types of polynomials,namely substituted Franklin-Fourier moments and weighted Franklin-Fourier moments(SFFMs and WFFMs),which are orthogonal in polar coordinates.The radial kernel functions of SFFMs and WFFMs are transformed Franklin functions and Franklin functions are composed of a class of complete orthogonal splines function system of degree one.Therefore,it provides the possibility of avoiding calculating high order polynomials,and thus the accurate values of SFFMs and WFFMs can be obtained directly with little computational cost.Theoretical and experimental results show that Franklin functions are not well suited for constructing higher-order moments of SFFMs and WFFMs,but compared with traditional orthogonal moments(e.g.,BFMs,OFMs and ZMs)in polar coordinates,the proposed two types of Franklin-Fourier Moments have better performance respectively in lower-order moments.
基金supported by the Specical Fund of Taishan Scholar of Shandong Province
文摘Moment invariants firstly introduced by M. K Hu in 1962, has some shortcomings. After counting a large number of statistical distribution information of Chinese characters,the authors put forward the concept of information moments and demonstrate its invariance to translation,rotation and scaling.Also they perform the experiment in which information moments compared with moment invaiants for the effects of similar Chinese characters and font recognition.At last they show the recognition rate of 88% by information moments,with 70% by moment inariants.
文摘Recently, orthogonal moments have become efficient tools for two-dimensional and three-dimensional(2D and 3D) image not only in pattern recognition, image vision, but also in image processing and applications engineering. Yet, there is still a major difficulty in 3D rotation invariants. In this paper, we propose new sets of invariants for 2D and 3D rotation, scaling and translation based on orthogonal radial Hahn moments. We also present theoretical mathematics to derive them. Thus, this paper introduces in the first case new 2D radial Hahn moments based on polar representation of an object by one-dimensional orthogonal discrete Hahn polynomials, and a circular function. In the second case, we present new 3D radial Hahn moments using a spherical representation of volumetric image by one-dimensional orthogonal discrete Hahn polynomials and a spherical function. Further 2D and 3D invariants are derived from the proposed 2D and 3D radial Hahn moments respectively, which appear as the third case. In order to test the proposed approach, we have resolved three issues: the image reconstruction, the invariance of rotation, scaling and translation, and the pattern recognition. The result of experiments show that the Hahn moments have done better than the Krawtchouk moments, with and without noise. Simultaneously, the mentioned reconstruction converges quickly to the original image using 2D and 3D radial Hahn moments, and the test images are clearly recognized from a set of images that are available in COIL-20 database for 2D image, and Princeton shape benchmark(PSB) database for 3D image.
文摘Image moments have been used in many research fields of the engineering. However, the related computation of invariant moments mostly adopted the polar coordinate system, which not only increase the computational load, but also cause large quantized error. To solve this problem, an improved algorithm to compute Pseudo-Jacobi-Fourier moments in the Cartesian coordinate system is proposed in this paper. The experimental results show that the reconstructed image with improved PJFM’s has more advantages than polar coordinate system, such as more information, fewer moments, less time consuming. And the recognition rate of the microscopic images of 8 helminth eggs was also higher than in polar coordinate system.
基金Supported by the National Natural Science Foundation of China(61502389)the Foundation Research Funds for Central University(3102015ZY047)
文摘Quality inspection of a PCB (Printed Circuit Board) always requires us to stitch some separated images into an integral one. However, during image acquisition, some environmental influences such as vibration, noise and illumination will cause image degradation. An efficient image mosaic method has been urgently required to obtain a high-quality PCB panorama. Hence, an image mosaic method based on Gaussian-Hermite moments is presented in this paper. The characteristic points in the neighborhood of a PCB are represented by Gaussian-Hermite moment in- variants. They are characterized by independence to translation or rotation transformations. Meanwhile, such feature representation shows better noise robustness. Experimental results show that the proposed method produces a qualified mosaic of PCB image.
基金the Fundamental Research Funds for Central Universities(No.HEUCF110111)the National Natural Science Foundation of China(No.51009040)+2 种基金the China Postdoctoral Science Foundation(No.2012M510928)the Heilongjiang Post-doctoral Fund(No.LBH-Z11205)the National High Technology Research and Development Program(863)of China(No.2011AA09A106)
文摘Wavelet moment invariants are constructed for object recognition based on the global feature and local feature of target, which are brought for the simple background of the underwater objects, complex structure, similar form etc. These invariant features realize the multi-dimension feature extraction of local topology and in- variant transform. Considering translation and scale invariant characteristics were ignored by conventional wavelet moments, some improvements were done in this paper. The cubic B-spline wavelets which are optimally localized in space-frequency and close to the forms of Li's(or Zernike's) polynomial moments were applied for calculating the wavelet moments. To testify superiority of the wavelet moments mentioned in this paper, generalized regres- sion neural network(GRNN) was used to calculate the recognition rates based on wavelet invariant moments and conventional invariant moments respectively. Wavelet moments obtained 100% recognition rate for every object and the conventional moments obtained less classification rate. The result shows that wavelet moment has the ability to identify many types of objects and is suitable for laser image recognition.
基金Sino-French Program of Advanced Research under,上海市科委资助项目
文摘In this paper, illumination-affine invariant methods are presented based onaffine moment normalization techniques, Zernike moments, and multiband correlation functions. Themethods are suitable for the illumination invariant recognition of 3D color texture. Complex valuedmoments (i.e., Zernike moments) and affine moment normalization are used in the derivation ofillumination affine invariants where the real valued affine moment invariants fail to provide affineinvariants that are independent of illumination changes. Three different moment normalizationmethods have been used, two of which are based on affine moment normalization technique and thethird is based on reducing the affine transformation to a Euclidian transform. It is shown that fora change of illumination and orientation, the affinely normalized Zernike moment matrices arerelated by a linear transform. Experimental results are obtained in two tests: the first is usedwith textures of outdoor scenes while the second is performed on the well-known CUReT texturedatabase. Both tests show high recognition efficiency of the proposed recognition methods.
文摘A novel algorithm is presented to make the results of image matching more reliable and accurate based on SIFT (Scale Invariant Feature Transform). SIFT algorithm has been identified as the most resistant matching algorithm to common image deformations; however, if there are similar regions in images, SIFT algorithm still generates some analogical descriptors and provides many mismatches. This paper examines the local image descriptor used by SIFT and presents a new algorithm by integrating SIFT with two-dimensional moment invariants and disparity gradient to improve the matching results. In the new algorithm, decision tree is used, and the whole matching process is divided into three levels with different primitives. Matching points are considered as correct ones only when they satisfy all the three similarity measurements. Experiment results demonstrate that the new approach is more reliable and accurate.
文摘To protect the copyright of the image as well as the image quality, a kind of image zero-watermark method based on the Krawtchouk moment invariants and timestamp is proposed. A method is used to protect the image, in which features are drawn out from the image as the watermarking. The main steps of the method are presented. Firstly, some low-order moment invariants of the image are extracted. Secondly, the moment invariants and the key are registered to a fair third party to gain the timestamp. Finally, the timestamp can be used to prove who the real owner is. The processing method is simple, only with a few low-order moment invariants to be computed. Experimental results are obtained and compared with those of the method based on geometric moment invariants. Results show that the scheme can well withstand such geometrical attacks as rotating, scaling, cropping, combined attack, translating, removing lines, filtering, and JPEG lossy compression.
文摘This paper proposes a new set of 3D rotation scaling and translation invariants of 3D radially shifted Legendre moments. We aim to develop two kinds of transformed shifted Legendre moments: a 3D substituted radial shifted Legendre moments (3DSRSLMs) and a 3D weighted radial one (3DWRSLMs). Both are centered on two types of polynomials. In the first case, a new 3D ra- dial complex moment is proposed. In the second case, new 3D substituted/weighted radial shifted Legendremoments (3DSRSLMs/3DWRSLMs) are introduced using a spherical representation of volumetric image. 3D invariants as derived from the sug- gested 3D radial shifted Legendre moments will appear in the third case. To confirm the proposed approach, we have resolved three is- sues. To confirm the proposed approach, we have resolved three issues: rotation, scaling and translation invariants. The result of experi- ments shows that the 3DSRSLMs and 3DWRSLMs have done better than the 3D radial complex moments with and without noise. Sim- ultaneously, the reconstruction converges rapidly to the original image using 3D radial 3DSRSLMs and 3DWRSLMs, and the test of 3D images are clearly recognized from a set of images that are available in Princeton shape benchmark (PSB) database for 3D image.
基金funded by Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R235)Princess Nourah Bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Watermarking of digital images is required in diversified applicationsranging from medical imaging to commercial images used over the web.Usually, the copyright information is embossed over the image in the form ofa logo at the corner or diagonal text in the background. However, this formof visible watermarking is not suitable for a large class of applications. In allsuch cases, a hidden watermark is embedded inside the original image as proofof ownership. A large number of techniques and algorithms are proposedby researchers for invisible watermarking. In this paper, we focus on issuesthat are critical for security aspects in the most common domains like digitalphotography copyrighting, online image stores, etc. The requirements of thisclass of application include robustness (resistance to attack), blindness (directextraction without original image), high embedding capacity, high Peak Signalto Noise Ratio (PSNR), and high Structural Similarity Matrix (SSIM). Mostof these requirements are conflicting, which means that an attempt to maximizeone requirement harms the other. In this paper, a blind type of imagewatermarking scheme is proposed using Lifting Wavelet Transform (LWT)as the baseline. Using this technique, custom binary watermarks in the formof a binary string can be embedded. Hu’s Invariant moments’ coefficientsare used as a key to extract the watermark. A Stochastic variant of theFirefly algorithm (FA) is used for the optimization of the technique. Undera prespecified size of embedding data, high PSNR and SSIM are obtainedusing the Stochastic Gradient variant of the Firefly technique. The simulationis done using Matrix Laboratory (MATLAB) tool and it is shown that theproposed technique outperforms the benchmark techniques of watermarkingconsidering PSNR and SSIM as quality metrics.
基金Supported by the Ministerial Level Research Foundation(404040401)
文摘Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new method based on virtual model and invariant moments was proposed to generate training samples.The method was composed of the following steps:use computer and simulation software to build target object's virtual model and then simulate the environment,light condition,camera parameter,etc.;rotate the model by spin and nutation of inclination to get the image sequence by virtual camera;preprocess each image and transfer them into binary image;calculate the invariant moments for each image and get a vectors' sequence.The vectors' sequence which was proved to be complete became the training samples together with the target outputs.The simulated results showed that the proposed method could be used to recognize the real targets and improve the accuracy of target recognition effectively when the sampling interval was short enough and the circumstance simulation was close enough.
基金partially funded by the Australian Research Council(No.DP110102076)
文摘Developing a watermarking method that is robust to cropping attack is a challenging task in image watermarking. The moment-based watermarking schemes show good robustness to common signal processing attacks and some geometric attacks but are sensitive to cropping attack. In this paper, we modify the moment-based approach to deal with cropping attack. Firstly, we find the probability density function (PDF) of the pixel value distribution from the original image. Secondly, we reshape and normalize the pdf of the pixel value distribution (PPVD) to form a two dimensional image. Then, the moment invariants are calculated from the PPVD image. Since PPVD is insensitive to cropping, the proposed method is robust to cropping attack. Besides, it also has high robustness against other common attacks. Theoretical analysis and experimental results demonstrate the effectiveness of the proposed method.