期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
On the Maximum of Wind Power Efficiency
1
作者 Gerhard Kramm Gary Sellhorst +3 位作者 Hannah K. Ross John Cooney Ralph Dlugi Nicole Mölders 《Journal of Power and Energy Engineering》 2016年第1期1-39,共39页
In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in ... In our paper we demonstrate that the filtration equation used by Gorban’ et al. for determining the maximum efficiency of plane propellers of about 30 percent for free fluids plays no role in describing the flows in the atmospheric boundary layer (ABL) because the ABL is mainly governed by turbulent motions. We also demonstrate that the stream tube model customarily applied to derive the Rankine-Froude theorem must be corrected in the sense of Glauert to provide an appropriate value for the axial velocity at the rotor area. Including this correction leads to the Betz-Joukowsky limit, the maximum efficiency of 59.3 percent. Thus, Gorban’ et al.’s 30% value may be valid in water, but it has to be discarded for the atmosphere. We also show that Joukowsky’s constant circulation model leads to values of the maximum efficiency which are higher than the Betz-Jow-kowsky limit if the tip speed ratio is very low. Some of these values, however, have to be rejected for physical reasons. Based on Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and S&oslashrensen we also illustrate that the maximum efficiency of propeller-type wind turbines depends on tip-speed ratio and the number of blades. 展开更多
关键词 Wind Power Power Efficiency General momentum theory Axial momentum theory Blade Element Analysis Betz-Joukowsky Limit Joukowsky’s Constant Circulation Model Glauert’s Optimum Actuator Disk Balance Equation for momentum Equation of Continuity Balance Equation for Kinetic Energy Reynolds’ Average Hesselberg’s Average Favre’s Average Bernoulli’s Equation Integral Equations
下载PDF
Wind Power Potential in Interior Alaska from a Micrometeorological Perspective 被引量:1
2
作者 Hannah K.Ross John Cooney +5 位作者 Megan Hinzman Samuel Smock Gary Sellhorst Ralph Dlugi Nicole Molders Gerhard Kramm 《Atmospheric and Climate Sciences》 2014年第1期100-121,共22页
The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of k... The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of kinetic energy for macroscopic and turbulent systems, and in a further step, Bernoulli’s equation and integral equations that customarily serve as the key equations in momentum theory and blade-element analysis, where the Lanchester-Betz-Joukowsky limit, Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sorensen are exemplarily illustrated. The wind power potential at three different sites in Interior Alaska (Delta Junction, Eva Creek, and Poker Flat) is assessed by considering the results of wind field predictions for the winter period from October 1, 2008, to April 1, 2009 provided by the Weather Research and Forecasting (WRF) model to avoid time-consuming and expensive tall-tower observations in Interior Alaska which is characterized by a relatively low degree of infrastructure outside of the city of Fairbanks. To predict the average power output we use the Weibull distributions derived from the predicted wind fields for these three different sites and the power curves of five different propeller-type wind turbines with rated powers ranging from 2 MW to 2.5 MW. These power curves are represented by general logistic functions. The predicted power capacity for the Eva Creek site is compared with that of the Eva Creek wind farm established in 2012. The results of our predictions for the winter period 2008/2009 are nearly 20 percent lower than those of the Eva Creek wind farm for the period from January to September 2013. 展开更多
关键词 Wind Power Power Efficiency Wind Power Potential Wind Power Prediction WRF/Chem MICROMETEOROLOGY momentum theory Blade Element Analysis Betz Limit Glauert’s Optimum Rotor Balance Equation for momentum Equation of Continuity Balance Equation for Kinetic Energy Reynolds’Average Hesselberg’s Average Bernoulli’s Equation Integral Equations Weibull Distribution General Logistic Function Eva Creek Wind Farm
下载PDF
STUDY ON VARIATION OF SETTING AND STOPPING PRESSURES OF SAFETY VALVE WITH STRUCTURAL MODIFICATION 被引量:1
3
作者 Lee Jinho Kwangzin Valve Industrial Co ,Ltd,Korea Kim Harkbong Kim Moonsang School of Aerospace and Mechanical Engineering,Hankook Aviation University,Korea 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2001年第2期127-138,共12页
The possibility of pressure control with the structural change of a safety valve is investigated Safety valve is commonly used as safety devices for numerous applications which include boilers,ships,industrial plant... The possibility of pressure control with the structural change of a safety valve is investigated Safety valve is commonly used as safety devices for numerous applications which include boilers,ships,industrial plants,and piping Setting and stopping pressures of a safety valve, p set and p sto ,are traditionally adjusted with a fine tuning of seat ring and valve ring heights, h sr and h vr However, it is not easy to achieve the proper setting and stopping pressures of a safety valve in practice The depth of inside and outside grooves in a valve, d i and d o are modified and their effects on setting and stopping pressures of a safety vlave are tested The most appropriate values appear 1 0 mm in d i and 0 5~1 0 mm in d o,respectively The valve ring height, h vr ,shows that the best results can be achieved at 2 3 mm for setting pressures of 0 1~0 4 MPa and 1 0 mm for setting pressures of 0 5~1 0 MPa The stopping pressures increases with the increase of seat ring height, h sr , upto certain h sr value and then becomes independent to the seat ring height This implies that there exists the optimum h sr ,which provides the largest flow rate and the proper stopping pressure Stopping pressures of a safety valve are adjusted with the seat ring and valve ring heights This study,however,demonstrated that the modification of value grooves also changes setting and stopping pressures of a safety valve Therefore,the proper selection in dimensions of the inside and outside grooves should be considered for the safety valve design 展开更多
关键词 Safety valve Compressive flow Isentropic flow theory Isentropic comressibility theory Setting pressure Stopping pressure Continuity equation momentum equation
下载PDF
Optimal Wing Rotation Angle by the Unsteady Blade Element Theory for Maximum Translational Force Generation in Insect-mimicking Flapping-wing Micro Air Vehicle 被引量:1
4
作者 Loan Thi Kim Au Hoang Vu Phan Hoon Cheol Park 《Journal of Bionic Engineering》 SCIE EI CSCD 2016年第2期261-270,共10页
This paper provides a parametric study to obtain the optimal wing rotation angle for the generation of maximum transla- tional force in an insect-mimicking Flapping-Wing Micro Air Vehicle (FWMAV) during hovering. Th... This paper provides a parametric study to obtain the optimal wing rotation angle for the generation of maximum transla- tional force in an insect-mimicking Flapping-Wing Micro Air Vehicle (FWMAV) during hovering. The blade element theory and momentum theory were combined to obtain the equation from which the translational aerodynamic force could be esti- mated. This equation was converted into a non-dimensional form, so that the effect of normalized parameters on the thrust coefficient could be analyzed. The research showed that the thrust coefficient for a given wing section depends on two factors, the rotation angle of the wing section and the ratio of the chord to the travel distance of the wing section in one flapping cycle. For each ratio that we investigated, we could arrive at an optimal rotation angle corresponding to a maximum thrust coefficient. This study may be able to provide guidance for the FWMAV design. 展开更多
关键词 FWMAV optimal rotation angle parametric study blade element theory momentum theory
原文传递
Influence of differential longitudinal cyclic pitch on flight dynamics of coaxial compound helicopter
5
作者 Yanqin ZHAO Ye YUAN Renliang CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期207-220,共14页
The Differential Longitudinal Cyclic Pitch(DLCP)in coaxial compound helicopter is found to be useful in mitigating low-speed rotor interactions and improving flight performance.The complex mutual interaction is simula... The Differential Longitudinal Cyclic Pitch(DLCP)in coaxial compound helicopter is found to be useful in mitigating low-speed rotor interactions and improving flight performance.The complex mutual interaction is simulated by a revised rotor aerodynamics model,where an improved Blade Element Momentum Theory(BEMT)is proposed.Comparisons with the rotor inflow distributions and aircraft trim results from literature validate the accuracy of the model.Then,the influence of the DLCP on the flight dynamics of the aircraft is analysed.The trim characteristics indicate that a negative DLCP can reduce collective and differential collective inputs in low speed forward flight,and the negative longitudinal gradient is alleviated.Moreover,a moderate DLCP can reduce the rotor and total power consumption by 4.68%and 2.9%,respectively.As DLCP further increases,the increased propeller power and unbalanced thrust allocation offset the improvement.In high-speed flight,DLCP does not improve the performance except for extra lateral and heading stick displacements.In addition,the tip clearance is degraded throughout the speed envelope due to the differential pitching moment and the higher thrust from the lower rotor.Meanwhile,the changed rotor efficiency and induced velocity alter low-speed dynamic stability and controllability.The pitch and roll subsidences are slightly degraded with the DLCP,while the heave subsidence,dutch roll and phugoid modes are improved.Lastly,the on-axis controllability,including collective,differential collective pitch,longitudinal and lateral cyclic pitches,varies with DLCP due to its effect on rotor efficiency and inflow distribution.In conclusion,a reasonable DLCP is recommended to adjust the rotor interaction and improve aircraft performance,and further to alter the flight dynamics and aerodynamics of aircraft. 展开更多
关键词 Blade element momentum theory Coaxial compound helicopter Differential longitudinal cyclic pitch Interaction model Tip clearance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部