It is shown that orbital angular momentum(OAM) is a promising new resource in future classical and quantum communications. However, the separation of OAM modes is still a big challenge. In this paper, we propose a sim...It is shown that orbital angular momentum(OAM) is a promising new resource in future classical and quantum communications. However, the separation of OAM modes is still a big challenge. In this paper, we propose a simple and efficient separation method with a radial varying phase. In the method, specific radial varying phases are designed and modulated for different OAM modes. The resultant beam is focused to the spots with different horizontal and vertical positions after a convex lens, when the coordinate transformation, including two optical elements with coordinate transformation phase and correct phase, operates on the received beam.The horizontal position of the spot is determined by the vortex phases, and the vertical position of the spot is dependent on the radial varying phases. The simulation and experimental results show that the proposed method is feasible both for separation of two OAM modes and separation of three OAM modes. The proposed separation method is available in principle for any neighboring OAM modes because the radial varying phase is controlled. Additionally, no extra instruments are introduced, and there is no diffraction and narrowing process limitation for the separation.展开更多
基金National Natural Science Foundation of China(NSFC)(61475075,61271238)Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology,Ministry of Education of the People's Republic of China(MOE)(NYKL2015011)
文摘It is shown that orbital angular momentum(OAM) is a promising new resource in future classical and quantum communications. However, the separation of OAM modes is still a big challenge. In this paper, we propose a simple and efficient separation method with a radial varying phase. In the method, specific radial varying phases are designed and modulated for different OAM modes. The resultant beam is focused to the spots with different horizontal and vertical positions after a convex lens, when the coordinate transformation, including two optical elements with coordinate transformation phase and correct phase, operates on the received beam.The horizontal position of the spot is determined by the vortex phases, and the vertical position of the spot is dependent on the radial varying phases. The simulation and experimental results show that the proposed method is feasible both for separation of two OAM modes and separation of three OAM modes. The proposed separation method is available in principle for any neighboring OAM modes because the radial varying phase is controlled. Additionally, no extra instruments are introduced, and there is no diffraction and narrowing process limitation for the separation.