Achieving land degradation neutrality(LDN)worldwide is a significant target of the Sustainable Development Goal(SDG15.3).Inner Mongolia,as a typical dryland region in northern China,has carried out several large-scale...Achieving land degradation neutrality(LDN)worldwide is a significant target of the Sustainable Development Goal(SDG15.3).Inner Mongolia,as a typical dryland region in northern China,has carried out several large-scale ecological restoration programs to combat land degradation.However,there is a lack of comprehensive assess-ment of its land degradation situation after ecological programs implementation,which is of great significance to supporting SDG15.3 in China.This study analyzed the land degradation situation using the improved SDG15.3.1 calculation framework based on fine resolution data in Inner Mongolia from 2000 to 2020,and finally compre-hensively evaluated the land status of the whole region and those subject to ecological programs.The results show that net land restoration proportion of various ecological project regions and whole region continues to increase.The scope of the Grain for Green Program(GGP)had the largest proportion of net land restoration while the Natural Reserve Program(NRP)had the lowest proportion from 2000 to 2020.The net land restoration area of Inner Mongolia during 2000-2010 and 2010-2020 was 35,800 km 2 and 65,300 km 2,respectively.Overall,Inner Mongolia has achieved statistically zero growth in land degradation under the governance of ecological restora-tion programs.Therefore,reasonable planning,well monitoring,and timely assessment of ecological restoration programs are crucial to support SDG15.3.展开更多
Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21~(st) century. One of the important ecological realms, arid grasslands of northern China, which...Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21~(st) century. One of the important ecological realms, arid grasslands of northern China, which occupy more than 70% of the region's land area. However, the impact of climate change on vegetation growth in these arid grasslands is not consistent and lacks corresponding quantitative research. In this study, NDVI(normalized difference vegetation index) and climate factors including temperature, precipitation, solar radiation, soil moisture, and meteorological drought were analyzed to explore the determinants of changes in grassland greenness in Inner Mongolia Autonomous Region(northern China) during 1982–2016. The results showed that grasslands in Inner Mongolia witnessed an obvious trend of seasonal greening during the study period. Two prominent climatic factors,precipitation and soil moisture accounted for approximately 33% and 27% of grassland NDVI trends in the region based on multiple linear regression and boosted regression tree methods. This finding highlights the impact of water constraints to vegetation growth in Inner Mongolia's grasslands. The dominant role of precipitation in regulating grassland NDVI trends in Inner Mongolia significantly weakened from 1982 to 1996, and the role of soil moisture strengthened after 1996. Our findings emphasize the enhanced importance of soil moisture in driving vegetation growth in arid grasslands of Inner Mongolia, which should be thoroughly investigated in the future.展开更多
Drought,which restricts the sustainable development of agriculture,ecological health,and social economy,is affected by a variety of factors.It is widely accepted that a single variable cannot fully reflect the charact...Drought,which restricts the sustainable development of agriculture,ecological health,and social economy,is affected by a variety of factors.It is widely accepted that a single variable cannot fully reflect the characteristics of drought events.Studying precipitation,reference evapotranspiration(ET_(0)),and vegetation yield can derive information to help conserve water resources in grassland ecosystems in arid and semi-arid regions.In this study,the interactions of precipitation,ET_(0),and vegetation yield in Darhan Muminggan Joint Banner(DMJB),a desert steppe in Inner Mongolia Autonomous Region,China were explored using two-dimensional(2D)and three-dimensional(3D)joint distribution models.Three types of Copula functions were applied to quantitatively analyze the joint distribution probability of different combinations of precipitation,ET_(0),and vegetation yield.For the precipitation–ET_(0)dry–wet type,the 2D joint distribution probability with precipitation≤245.69 mm/a or ET_(0)≥959.20 mm/a in DMJB was approximately 0.60,while the joint distribution probability with precipitation≤245.69 mm/a and ET_(0)≥959.20 mm/a was approximately 0.20.Correspondingly,the joint return period that at least one of the two events(precipitation was dry or ET_(0)was wet)occurred was 2 a,and the co-occurrence return period that both events(precipitation was dry and ET_(0)was wet)occurred was 5 a.Under this condition,the interval between dry and wet events would be short,the water supply and demand were unbalanced,and the water demand of vegetation would not be met.In addition,when precipitation remained stable and ET_(0)increased,the 3D joint distribution probability that vegetation yield would decrease due to water shortage in the precipitation–ET_(0)dry–wet years could reach up to 0.60–0.70.In future work,irrigation activities and water allocation criteria need to be implemented to increase vegetation yield and the safety of water resources in the desert steppe of Inner Mongolia.展开更多
Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China,but the spatial patterns and driving mechanisms of water quality in lakes so far remain uncl...Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China,but the spatial patterns and driving mechanisms of water quality in lakes so far remain unclear.This study aimed to identify the spatial changes in water quality and the driving factors of seven lakes(Juyanhai Lake,Ulansuhai Lake,Hongjiannao Lake,Daihai Lake,Chagannaoer Lake,Hulun Lake,and Wulannuoer Lake)across the longitudinal axis(from the west to the east)of Inner Mongolia.Large-scale research was conducted using the comprehensive trophic level index(TLI(Σ)),multivariate statistics,and spatial analysis methods.The results showed that most lakes in Inner Mongolia were weakly alkaline.Total dissolved solids and salinity of lake water showed obvious zonation characteristics.Nitrogen and phosphorus were identified as the main pollutants in lakes,with high average concentrations of total nitrogen and total phosphorus being of 4.05 and 0.21 mg/L,respectively.The values of TLI(Σ)ranged from 49.14 to 71.77,indicating varying degrees of lake eutrophication,and phosphorus was the main driver of lake eutrophication.The lakes of Inner Mongolia could be categorized into lakes to the west of Daihai Lake and lakes to the east of Daihai Lake in terms of salinity and TLI(Σ).The salinity levels of lakes to the west of Daihai Lake exceeded those of lakes to the east of Daihai Lake,whereas the opposite trend was observed for lake trophic level.The intensity and mode of anthropogenic activities were the driving factors of the spatial patterns of lake water quality.It is recommended to control the impact of anthropogenic activities on the water quality of lakes in Inner Mongolia to improve lake ecological environment.These findings provide a more thorough understanding of the driving mechanism of the spatial patterns of water quality in lakes of Inner Mongolia,which can be used to develop strategies for lake ecosystem protection and water resources management in this region.展开更多
Carbon monoxide poisoning (COP) from 2 to 9 October 2019 was a major public health concern in Ulaanbaatar, Mongolia, after a transition from consumption of raw coal to upgraded briquette fuel. During the period, a tot...Carbon monoxide poisoning (COP) from 2 to 9 October 2019 was a major public health concern in Ulaanbaatar, Mongolia, after a transition from consumption of raw coal to upgraded briquette fuel. During the period, a total of 186 residents, which is 16 times more than the previous years, were exposed to COP and 6 persons died at home. We conduct a cross-sectional study by using registration data and medical history of all hospitalized patients with a diagnosis of COP from 2 to 9 October 2019 and had an in-depth interview. 144 (77.4%) people from 85 households registered as potential cases and 124 (86.1%) people were diagnosed with COP. All households used upgraded briquettes, and 41 households (48.2%) used them for the first time. In 50% of cases, the stove was broken, the chimney was short, not heated, and the clay joint connecting the wall stove was broken. The majority of interviewees were unaware of COP and improperly used briquettes, and the safety of chimneys and stoves was insufficient which caused unintentional COP. It is necessary to provide information to the local population about the potential risks of COP, install CO alarms in households, and educate the population. In further, a well-established poisoning surveillance system is an important aspect of public health emergency preparedness in Mongolia.展开更多
In this article, the researchers tried to evaluate the contribution of civil society to Mongolian democracy and the problems faced by civil society. In addition, the article aimed to determine the unique national crit...In this article, the researchers tried to evaluate the contribution of civil society to Mongolian democracy and the problems faced by civil society. In addition, the article aimed to determine the unique national criteria of Mongolian democracy and the need to create an organization to monitor the process of democracy. The process of identifying important documents and ideals for the development of Mongolian civil society today is still in its early stages. It can be said that the approval of the democratic constitution and the first free and fair parliamentary elections as a country that has newly and restored democracy became another impetus for the creation of a new type of citizen organization. It is characterized by trying to study the changes that have occurred since this historical period at the intersection of political science and security studies. One of the most important issues today is to find out how many non-governmental and civil society organizations exist in Mongolia today, which are Western-oriented, focused on specific issues, have their own position and opinion, are specialized, and are capable of influencing government policy. On the other hand, in this article, we emphasize whether non-governmental and civil society organizations, which aim to hold the government accountable, and carry out influence and control activities, are fully developed.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grants No.41991232 and 42171318)and the Fundamental Research Funds for the Central Universities.
文摘Achieving land degradation neutrality(LDN)worldwide is a significant target of the Sustainable Development Goal(SDG15.3).Inner Mongolia,as a typical dryland region in northern China,has carried out several large-scale ecological restoration programs to combat land degradation.However,there is a lack of comprehensive assess-ment of its land degradation situation after ecological programs implementation,which is of great significance to supporting SDG15.3 in China.This study analyzed the land degradation situation using the improved SDG15.3.1 calculation framework based on fine resolution data in Inner Mongolia from 2000 to 2020,and finally compre-hensively evaluated the land status of the whole region and those subject to ecological programs.The results show that net land restoration proportion of various ecological project regions and whole region continues to increase.The scope of the Grain for Green Program(GGP)had the largest proportion of net land restoration while the Natural Reserve Program(NRP)had the lowest proportion from 2000 to 2020.The net land restoration area of Inner Mongolia during 2000-2010 and 2010-2020 was 35,800 km 2 and 65,300 km 2,respectively.Overall,Inner Mongolia has achieved statistically zero growth in land degradation under the governance of ecological restora-tion programs.Therefore,reasonable planning,well monitoring,and timely assessment of ecological restoration programs are crucial to support SDG15.3.
基金funded by the National Natural Science Foundation of China (42101295)the Science and Technology Department of Jiangsu (BK20210657)the Natural Science Foundation of Jiangsu Higher Education Institutions of China (21KJB170003)。
文摘Climate change impacts on grasslands that cover a quarter of the global land area, have become unprecedented during the 21~(st) century. One of the important ecological realms, arid grasslands of northern China, which occupy more than 70% of the region's land area. However, the impact of climate change on vegetation growth in these arid grasslands is not consistent and lacks corresponding quantitative research. In this study, NDVI(normalized difference vegetation index) and climate factors including temperature, precipitation, solar radiation, soil moisture, and meteorological drought were analyzed to explore the determinants of changes in grassland greenness in Inner Mongolia Autonomous Region(northern China) during 1982–2016. The results showed that grasslands in Inner Mongolia witnessed an obvious trend of seasonal greening during the study period. Two prominent climatic factors,precipitation and soil moisture accounted for approximately 33% and 27% of grassland NDVI trends in the region based on multiple linear regression and boosted regression tree methods. This finding highlights the impact of water constraints to vegetation growth in Inner Mongolia's grasslands. The dominant role of precipitation in regulating grassland NDVI trends in Inner Mongolia significantly weakened from 1982 to 1996, and the role of soil moisture strengthened after 1996. Our findings emphasize the enhanced importance of soil moisture in driving vegetation growth in arid grasslands of Inner Mongolia, which should be thoroughly investigated in the future.
基金This research was supported by the Natural Science Foundation of Inner Mongolia Autonomous Region,China(2022QN04003)the Central Government to Guide Local Scientific and Technological Development(2021ZY0031).
文摘Drought,which restricts the sustainable development of agriculture,ecological health,and social economy,is affected by a variety of factors.It is widely accepted that a single variable cannot fully reflect the characteristics of drought events.Studying precipitation,reference evapotranspiration(ET_(0)),and vegetation yield can derive information to help conserve water resources in grassland ecosystems in arid and semi-arid regions.In this study,the interactions of precipitation,ET_(0),and vegetation yield in Darhan Muminggan Joint Banner(DMJB),a desert steppe in Inner Mongolia Autonomous Region,China were explored using two-dimensional(2D)and three-dimensional(3D)joint distribution models.Three types of Copula functions were applied to quantitatively analyze the joint distribution probability of different combinations of precipitation,ET_(0),and vegetation yield.For the precipitation–ET_(0)dry–wet type,the 2D joint distribution probability with precipitation≤245.69 mm/a or ET_(0)≥959.20 mm/a in DMJB was approximately 0.60,while the joint distribution probability with precipitation≤245.69 mm/a and ET_(0)≥959.20 mm/a was approximately 0.20.Correspondingly,the joint return period that at least one of the two events(precipitation was dry or ET_(0)was wet)occurred was 2 a,and the co-occurrence return period that both events(precipitation was dry and ET_(0)was wet)occurred was 5 a.Under this condition,the interval between dry and wet events would be short,the water supply and demand were unbalanced,and the water demand of vegetation would not be met.In addition,when precipitation remained stable and ET_(0)increased,the 3D joint distribution probability that vegetation yield would decrease due to water shortage in the precipitation–ET_(0)dry–wet years could reach up to 0.60–0.70.In future work,irrigation activities and water allocation criteria need to be implemented to increase vegetation yield and the safety of water resources in the desert steppe of Inner Mongolia.
基金funded by the National Key Research and Development Program of China(2021YFC3201203)the Major Science and Technology Projects of Inner Mongolia Autonomous Region(2020ZD0009)+2 种基金the National Natural Science Foundation of China(51869014)the Open Project Program of the Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau(KF2020006)the Special Funds for Innovation and Entrepreneurship of Postgraduates in Inner Mongolia University(11200-121024).
文摘Lakes play important roles in sustaining the ecosystem and economic development in Inner Mongolia Autonomous Region of China,but the spatial patterns and driving mechanisms of water quality in lakes so far remain unclear.This study aimed to identify the spatial changes in water quality and the driving factors of seven lakes(Juyanhai Lake,Ulansuhai Lake,Hongjiannao Lake,Daihai Lake,Chagannaoer Lake,Hulun Lake,and Wulannuoer Lake)across the longitudinal axis(from the west to the east)of Inner Mongolia.Large-scale research was conducted using the comprehensive trophic level index(TLI(Σ)),multivariate statistics,and spatial analysis methods.The results showed that most lakes in Inner Mongolia were weakly alkaline.Total dissolved solids and salinity of lake water showed obvious zonation characteristics.Nitrogen and phosphorus were identified as the main pollutants in lakes,with high average concentrations of total nitrogen and total phosphorus being of 4.05 and 0.21 mg/L,respectively.The values of TLI(Σ)ranged from 49.14 to 71.77,indicating varying degrees of lake eutrophication,and phosphorus was the main driver of lake eutrophication.The lakes of Inner Mongolia could be categorized into lakes to the west of Daihai Lake and lakes to the east of Daihai Lake in terms of salinity and TLI(Σ).The salinity levels of lakes to the west of Daihai Lake exceeded those of lakes to the east of Daihai Lake,whereas the opposite trend was observed for lake trophic level.The intensity and mode of anthropogenic activities were the driving factors of the spatial patterns of lake water quality.It is recommended to control the impact of anthropogenic activities on the water quality of lakes in Inner Mongolia to improve lake ecological environment.These findings provide a more thorough understanding of the driving mechanism of the spatial patterns of water quality in lakes of Inner Mongolia,which can be used to develop strategies for lake ecosystem protection and water resources management in this region.
文摘Carbon monoxide poisoning (COP) from 2 to 9 October 2019 was a major public health concern in Ulaanbaatar, Mongolia, after a transition from consumption of raw coal to upgraded briquette fuel. During the period, a total of 186 residents, which is 16 times more than the previous years, were exposed to COP and 6 persons died at home. We conduct a cross-sectional study by using registration data and medical history of all hospitalized patients with a diagnosis of COP from 2 to 9 October 2019 and had an in-depth interview. 144 (77.4%) people from 85 households registered as potential cases and 124 (86.1%) people were diagnosed with COP. All households used upgraded briquettes, and 41 households (48.2%) used them for the first time. In 50% of cases, the stove was broken, the chimney was short, not heated, and the clay joint connecting the wall stove was broken. The majority of interviewees were unaware of COP and improperly used briquettes, and the safety of chimneys and stoves was insufficient which caused unintentional COP. It is necessary to provide information to the local population about the potential risks of COP, install CO alarms in households, and educate the population. In further, a well-established poisoning surveillance system is an important aspect of public health emergency preparedness in Mongolia.
文摘In this article, the researchers tried to evaluate the contribution of civil society to Mongolian democracy and the problems faced by civil society. In addition, the article aimed to determine the unique national criteria of Mongolian democracy and the need to create an organization to monitor the process of democracy. The process of identifying important documents and ideals for the development of Mongolian civil society today is still in its early stages. It can be said that the approval of the democratic constitution and the first free and fair parliamentary elections as a country that has newly and restored democracy became another impetus for the creation of a new type of citizen organization. It is characterized by trying to study the changes that have occurred since this historical period at the intersection of political science and security studies. One of the most important issues today is to find out how many non-governmental and civil society organizations exist in Mongolia today, which are Western-oriented, focused on specific issues, have their own position and opinion, are specialized, and are capable of influencing government policy. On the other hand, in this article, we emphasize whether non-governmental and civil society organizations, which aim to hold the government accountable, and carry out influence and control activities, are fully developed.