This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart ...This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems.展开更多
Intensity modulated radiation therapy (IMRT) is a highly accurate technique that is usually implemented in either dynamic or step-and-shoot fashion with many segments each having low monitor units (MUs). The present s...Intensity modulated radiation therapy (IMRT) is a highly accurate technique that is usually implemented in either dynamic or step-and-shoot fashion with many segments each having low monitor units (MUs). The present study evaluated the effects of beam startup characteristics on the dose delivery accuracy for each segment at low MUs for step-and-shoot IMRT with an Elekta Precise accelerator at the highest dose rates. We used a two-dimensional semi-conductor detector for the dose measurements. The field size of each segment was assumed to be 20 ×20 cm2 and each segment was set to deliver 1 - 10 MUs. Our results show a variation in dose delivery accuracy between segments for the same IMRT beam, which can be attributed to the beam startup characteristics. This variability is attributed to the changes in the transient changes in the temperatures of the electron gun filament and the magnetron. That is, the transient increase in the temperature of the filament leads to increasing doses with time and that of the magnetron leads to decreasing doses with time during the first few MUs.展开更多
Diabetes mellitus affects people worldwide,and management of its acute complications or treatment-related adverse events is particularly important in critically ill patients.Previous reports have confirmed that hyperg...Diabetes mellitus affects people worldwide,and management of its acute complications or treatment-related adverse events is particularly important in critically ill patients.Previous reports have confirmed that hyperglycemia can increase the risk of mortality in patients cared in the intensive care unit(ICU).In addition,severe and multiple hypoglycemia increases the risk of mortality when using insulin or intensive antidiabetic therapy.The innovation of continuous glucose monitoring(CGM)may help to alert medical caregivers with regard to the development of hyperglycemia and hypoglycemia,which may decrease the potential complications in patients in the ICU.The major limitation of CGM is the measurement of interstitial glucose levels rather than real-time blood glucose levels;thus,there will be a delay in the treatment of hyperglycemia and hypoglycemia in patients.Recently,the European Union approved a state-of-art artificial intelligence directed loop system coordinated by CGM and a continuous insulin pump for diabetes control,which may provide a practical way to prevent acute adverse glycemic events related to antidiabetic therapy in critically ill patients.In this mini-review paper,we describe the application of CGM to patients in the ICU and summarize the pros and cons of CGM.展开更多
In this paper we propose an efcient process of physiological artifact elimination methodology from brain waves(BW),which are also commonly known as electroencephalogram(EEG)signal.In a clinical environment during the ...In this paper we propose an efcient process of physiological artifact elimination methodology from brain waves(BW),which are also commonly known as electroencephalogram(EEG)signal.In a clinical environment during the acquisition of BW several artifacts contaminates the actual BW component.This leads to inaccurate and ambiguous diagnosis.As the statistical nature of the EEG signal is more non-stationery,adaptive ltering is the more promising method for the process of artifact elimination.In clinical conditions,the conventional adaptive techniques require many numbers of computational operations and leads to data samples overlapping and instability of the algorithm used.This causes delay in diagnosis and decision making.To overcome this problem in our work we propose to set a threshold value to diminish the problem of round off error.The resultant adaptive algorithm based on this strategy is Non-linear Least mean square(NL2MS)algorithm.Again,to improve this algorithm in terms of ltering capability we perform data normalization,using this algorithm several hybrid versions are developed to improve ltering and reduce computational operations.Using the method,a new signal enhancement unit(SEU)is realized and performance of various hybrid versions of algorithms examined using real EEG signals recorded from the subject.The ability of the proposed schemes is measured in terms of convergence,enhancement and multiplications required.Among various SEUs,the MCN2L 2MS algorithm achieves 14.6734,12.8732,10.9257,15.7790 dB during the artifact removal of RA,EMG,CSA and EBA components with only two multiplications.Hence,this algorithm seems to be better candidate for artifact elimination.展开更多
This paper proposes a PMU (phasor measurement unit) based monitoring and estimation scheme of power system small-signal stability in Singapore-Malaysia interconnection power system through a 50-Hz and 500 kV transmi...This paper proposes a PMU (phasor measurement unit) based monitoring and estimation scheme of power system small-signal stability in Singapore-Malaysia interconnection power system through a 50-Hz and 500 kV transmission line. Two PMUs are installed in the power system interconnection network of Singapore-Malaysia. One PMU is located in Singapore and the other one in Malaysia (Penang). Both PMUs measure the single-phase voltage phasor. The data filtering technique based on FFT (Fast Fourier Transform) is employed to extract oscillation data for single mode. Finally, some analysis results of monitoring and estimation of Singapore-Malaysia interconnected power system based on application practice of the CampusWAMS are presented and analyzed.展开更多
The stability of delivery of low monitor unit (MU) setting is important especially for step-and-shoot intensity-modulated radiotherapy (IMRT), because the nature of the technique is inherent to repeat beam on/off acco...The stability of delivery of low monitor unit (MU) setting is important especially for step-and-shoot intensity-modulated radiotherapy (IMRT), because the nature of the technique is inherent to repeat beam on/off according to the number of the segments. This study evaluates the dose linearity and profile flatness/symmetry under low MU settings for Vero4DRT, a new linear-accelerator based irradiation system that currently implements step-and-shoot IMRT. To evaluate the dose linearity and flatness/symmetry, the point doses and beam profiles were measured as functions of MU and dose rates. The accuracy of dose delivery depended on the dose rate. Under all dose rates, the dose was linear within 1% above 5 MU and within 2% above 3 MU. The beam symmetry was degraded in-line compared with crossline, although both profiles were symmetric within 2% at all dose settings. The profile flatness was also within 2% above 5 MU at any dose rate and showed no significant variation among the low MU settings. To ensure stable beam delivery without increasing the treatment time of Vero4DRT, we recommend a delivery of 5 MU per segment at a dose rate of 500 MU/min.展开更多
Background: In linear accelerators, the treatment field’s uniform intensity is achieved by including a flattening filter in the beam. However, to produce more conformal dose distributions, contemporary radiotherapy p...Background: In linear accelerators, the treatment field’s uniform intensity is achieved by including a flattening filter in the beam. However, to produce more conformal dose distributions, contemporary radiotherapy practice now frequently uses fluence and aperture modifying techniques, such as volumetric modulated arc therapy. In these circumstances, the flattening filter in the beam manufacturing process is no longer required. It is therefore necessary to compare the monitor units of 6 MV and flattening filter free plans and how it influences the gamma pass rates to determine which is best for treating cervical cancer with pelvic lymph node metastasis. Methods: VMAT plans for fifteen patients with cervical cancer with pathological pelvic lymph node metastasis were included in this study. Each patient had two VMAT plans using conventional 6 MV beam with flattening filter and one with flattening filter free beam (FFF). The VMAT plans were made using two arcs, and then recalculated to give the planned dose distribution to the detectors in a Delta4 phantom. The VMAT plans were irradiated on the Delta4 phantom using an Elekta linear accelerator (6 MV). Results: The mean monitor unit for the 6 MV plans was 506.3 MU and a standard deviation of 48.6 while that of the FFF plans had a mean MU of 701.5 with a standard deviation of 87.6. The total monitor units (MUs) for the FFF plans were significantly greater than the 6 MV plans (p = 6.1 × 10<sup>-5</sup>). Conclusion: Flattening filter free (FFF) plans require more numbers of monitor units in comparison to conventional 6 MV filtered beams for external radiation of cervical cancer with pelvic lymph nodes involvement.展开更多
Based on the existed equipment (the power line carrier, optic fiber, twisted pair and wireless apparatus) being used to the same route in the current communication net of distribution management system (DMS), this pap...Based on the existed equipment (the power line carrier, optic fiber, twisted pair and wireless apparatus) being used to the same route in the current communication net of distribution management system (DMS), this paper presents a new kind of communication monitor DMS, which provides a communication monitoring interface and then by DMS, data transfer problem from field terminal unit to junction center station can be solved and the communication channels can also be supervised. At the same time, synthetically using computer communication, internet technology and database technology, this system can realize the real time monitoring and fault locating in the communication network.展开更多
A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power system...A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power systems worldwide and has led to operation of power systems closer to their stability limits and to power exchange in new patterns. These issues, as well as the on-going worldwide trend towards deregulation of the entire industry on the one hand and the increased need for accurate and better network monitoring on the other hand, force power utilities exposed to this pressure to demand new solutions for wide area monitoring, protection and control. Wide-area monitoring, protection, and control require communicating the specific-node information to a remote station but all information should be time synchronized so that to neutralize the time difference between information. It gives a complete simultaneous snap shot of the power system. The conventional system is not able to satisfy the time-synchronized requirement of power system. Phasor Measurement Unit (PMU) is enabler of time-synchronized measurement, it communicate the synchronized local information to remote station.展开更多
In this paper, a network-based monitoring unit for condition monitoring andfault diagnosis of rotating machinery is designed and implemented. With the technology of DSP(Digital signal processing) , TCP/IP, and simulta...In this paper, a network-based monitoring unit for condition monitoring andfault diagnosis of rotating machinery is designed and implemented. With the technology of DSP(Digital signal processing) , TCP/IP, and simultaneous acquisition, a mechanism of multi-process andinter-process communication, the integrating problem of signal acquisition, the data dynamicmanagement and network-based configuration in the embedded condition monitoring system is solved. Itoffers the input function of monitoring information for network-based condition monitoring and afault diagnosis system.展开更多
ZJZ-2 system has the following functions: (1) Real-time on-line sampling and FFT analysis (32 channel); (2) Data aquisition, analysis and storage during start-up and shut-down; (3) Alarming, emergency recognition and ...ZJZ-2 system has the following functions: (1) Real-time on-line sampling and FFT analysis (32 channel); (2) Data aquisition, analysis and storage during start-up and shut-down; (3) Alarming, emergency recognition and fault retrieval; (4) Data aquisition, analysis and storage during daily operation; (5) Recall of historic data; (6) Output of routine reports and tables; (7) Analysis of vibration behaviour: Bode plot, polar plot, spectrum, cascade, waveform, shaft orbit, trend, etc;展开更多
BACKGROUND Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure(ICP)modalities or unstable to transport for imaging.Ultrasonography-based optic n...BACKGROUND Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure(ICP)modalities or unstable to transport for imaging.Ultrasonography-based optic nerve sheath diameter(ONSD)is an attractive option as it is reliable,repeatable and easily performed at the bedside.It has been sufficiently validated in traumatic brain injury(TBI)to be incorporated into the guidelines.However,currently the data for non-TBI patients is inconsistent for a scientific recommendation to be made.AIM To compile the existing evidence for understanding the scope of ONSD in measuring ICP in adult non-traumatic neuro-critical patients.METHODS PubMed,Google Scholar and research citation analysis databases were searched for studies in adult patients with non-traumatic causes of raised ICP.Studies from 2010 to 2024 in English languages were included.RESULTS We found 37 articles relevant to our search.The cutoff for ONSD in predicting ICP varied from 4.1 to 6.3 mm.Most of the articles used cerebrospinal fluid opening pressure followed by raised ICP on computed tomography/magnetic resonance imaging as the comparator parameter.ONSD was also found to be a reliable outcome measure in cases of acute ischaemic stroke,intracerebral bleeding and intracranial infection.However,ONSD is of doubtful utility in septic metabolic encephalopathy,dysnatremias and aneurysmal subarachnoid haemorrhage.CONCLUSION ONSD is a useful tool for the diagnosis of raised ICP in non-traumatic neuro-critically ill patients and may also have a role in the prognostication of a subset of patients.展开更多
Objective:To explore the clinical rationale of critical care nurses for personalizing monitor alarms.One of the most crucial jobs assigned to critical care nurses is monitoring patients'physiological indicators an...Objective:To explore the clinical rationale of critical care nurses for personalizing monitor alarms.One of the most crucial jobs assigned to critical care nurses is monitoring patients'physiological indicators and carrying out the necessary associated interventions.Successful use of equipment in the nursing practice environment will be improved by a thorough understanding of the nurse's approach to alarm configuration.Methods:A mixed-method design integrating quantitative and qualitative components was used.The sample of this study recruited a convenience sample of 60 nurses who have worked in critical care areas.This study took place at Lebanese American University Medical Center Rizk Hospital,utilizing a semi-structured interview with participants.Results:The study demonstrated the high incidence of nuisance alarms and the desensitization of critical care nurses to vital ones.According to the nurses,frequent false alarms and a shortage of staff are the 2 main causes of alarm desensitization.Age was significantly associated with the perception of Smart alarms,according to the data(P=0.03).Four interconnected themes and subcategories that reflect the clinical reasoning process for alarm customization were developed as a result of the study's qualitative component:(1)unit alarm environment;(2)nursing style;(3)motivation to customize;and(4)clinical and technological customization.Conclusions:According to this study,nurses believe that alarms are valuable.However,a qualitative analysis of the experiences revealed that customization has been severely limited since the healthcare team depends on nurses to complete these tasks independently.Additionally,a staffing shortage and lack of technical training at the start of placement have also hindered customization.展开更多
基金support from the National Science and Technology Council of Taiwan(Contract Nos.111-2221 E-011081 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciatedWe also thank Wang Jhan Yang Charitable Trust Fund(Contract No.WJY 2020-HR-01)for its financial support.
文摘This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems.
文摘Intensity modulated radiation therapy (IMRT) is a highly accurate technique that is usually implemented in either dynamic or step-and-shoot fashion with many segments each having low monitor units (MUs). The present study evaluated the effects of beam startup characteristics on the dose delivery accuracy for each segment at low MUs for step-and-shoot IMRT with an Elekta Precise accelerator at the highest dose rates. We used a two-dimensional semi-conductor detector for the dose measurements. The field size of each segment was assumed to be 20 ×20 cm2 and each segment was set to deliver 1 - 10 MUs. Our results show a variation in dose delivery accuracy between segments for the same IMRT beam, which can be attributed to the beam startup characteristics. This variability is attributed to the changes in the transient changes in the temperatures of the electron gun filament and the magnetron. That is, the transient increase in the temperature of the filament leads to increasing doses with time and that of the magnetron leads to decreasing doses with time during the first few MUs.
文摘Diabetes mellitus affects people worldwide,and management of its acute complications or treatment-related adverse events is particularly important in critically ill patients.Previous reports have confirmed that hyperglycemia can increase the risk of mortality in patients cared in the intensive care unit(ICU).In addition,severe and multiple hypoglycemia increases the risk of mortality when using insulin or intensive antidiabetic therapy.The innovation of continuous glucose monitoring(CGM)may help to alert medical caregivers with regard to the development of hyperglycemia and hypoglycemia,which may decrease the potential complications in patients in the ICU.The major limitation of CGM is the measurement of interstitial glucose levels rather than real-time blood glucose levels;thus,there will be a delay in the treatment of hyperglycemia and hypoglycemia in patients.Recently,the European Union approved a state-of-art artificial intelligence directed loop system coordinated by CGM and a continuous insulin pump for diabetes control,which may provide a practical way to prevent acute adverse glycemic events related to antidiabetic therapy in critically ill patients.In this mini-review paper,we describe the application of CGM to patients in the ICU and summarize the pros and cons of CGM.
文摘In this paper we propose an efcient process of physiological artifact elimination methodology from brain waves(BW),which are also commonly known as electroencephalogram(EEG)signal.In a clinical environment during the acquisition of BW several artifacts contaminates the actual BW component.This leads to inaccurate and ambiguous diagnosis.As the statistical nature of the EEG signal is more non-stationery,adaptive ltering is the more promising method for the process of artifact elimination.In clinical conditions,the conventional adaptive techniques require many numbers of computational operations and leads to data samples overlapping and instability of the algorithm used.This causes delay in diagnosis and decision making.To overcome this problem in our work we propose to set a threshold value to diminish the problem of round off error.The resultant adaptive algorithm based on this strategy is Non-linear Least mean square(NL2MS)algorithm.Again,to improve this algorithm in terms of ltering capability we perform data normalization,using this algorithm several hybrid versions are developed to improve ltering and reduce computational operations.Using the method,a new signal enhancement unit(SEU)is realized and performance of various hybrid versions of algorithms examined using real EEG signals recorded from the subject.The ability of the proposed schemes is measured in terms of convergence,enhancement and multiplications required.Among various SEUs,the MCN2L 2MS algorithm achieves 14.6734,12.8732,10.9257,15.7790 dB during the artifact removal of RA,EMG,CSA and EBA components with only two multiplications.Hence,this algorithm seems to be better candidate for artifact elimination.
文摘This paper proposes a PMU (phasor measurement unit) based monitoring and estimation scheme of power system small-signal stability in Singapore-Malaysia interconnection power system through a 50-Hz and 500 kV transmission line. Two PMUs are installed in the power system interconnection network of Singapore-Malaysia. One PMU is located in Singapore and the other one in Malaysia (Penang). Both PMUs measure the single-phase voltage phasor. The data filtering technique based on FFT (Fast Fourier Transform) is employed to extract oscillation data for single mode. Finally, some analysis results of monitoring and estimation of Singapore-Malaysia interconnected power system based on application practice of the CampusWAMS are presented and analyzed.
文摘The stability of delivery of low monitor unit (MU) setting is important especially for step-and-shoot intensity-modulated radiotherapy (IMRT), because the nature of the technique is inherent to repeat beam on/off according to the number of the segments. This study evaluates the dose linearity and profile flatness/symmetry under low MU settings for Vero4DRT, a new linear-accelerator based irradiation system that currently implements step-and-shoot IMRT. To evaluate the dose linearity and flatness/symmetry, the point doses and beam profiles were measured as functions of MU and dose rates. The accuracy of dose delivery depended on the dose rate. Under all dose rates, the dose was linear within 1% above 5 MU and within 2% above 3 MU. The beam symmetry was degraded in-line compared with crossline, although both profiles were symmetric within 2% at all dose settings. The profile flatness was also within 2% above 5 MU at any dose rate and showed no significant variation among the low MU settings. To ensure stable beam delivery without increasing the treatment time of Vero4DRT, we recommend a delivery of 5 MU per segment at a dose rate of 500 MU/min.
文摘Background: In linear accelerators, the treatment field’s uniform intensity is achieved by including a flattening filter in the beam. However, to produce more conformal dose distributions, contemporary radiotherapy practice now frequently uses fluence and aperture modifying techniques, such as volumetric modulated arc therapy. In these circumstances, the flattening filter in the beam manufacturing process is no longer required. It is therefore necessary to compare the monitor units of 6 MV and flattening filter free plans and how it influences the gamma pass rates to determine which is best for treating cervical cancer with pelvic lymph node metastasis. Methods: VMAT plans for fifteen patients with cervical cancer with pathological pelvic lymph node metastasis were included in this study. Each patient had two VMAT plans using conventional 6 MV beam with flattening filter and one with flattening filter free beam (FFF). The VMAT plans were made using two arcs, and then recalculated to give the planned dose distribution to the detectors in a Delta4 phantom. The VMAT plans were irradiated on the Delta4 phantom using an Elekta linear accelerator (6 MV). Results: The mean monitor unit for the 6 MV plans was 506.3 MU and a standard deviation of 48.6 while that of the FFF plans had a mean MU of 701.5 with a standard deviation of 87.6. The total monitor units (MUs) for the FFF plans were significantly greater than the 6 MV plans (p = 6.1 × 10<sup>-5</sup>). Conclusion: Flattening filter free (FFF) plans require more numbers of monitor units in comparison to conventional 6 MV filtered beams for external radiation of cervical cancer with pelvic lymph nodes involvement.
文摘Based on the existed equipment (the power line carrier, optic fiber, twisted pair and wireless apparatus) being used to the same route in the current communication net of distribution management system (DMS), this paper presents a new kind of communication monitor DMS, which provides a communication monitoring interface and then by DMS, data transfer problem from field terminal unit to junction center station can be solved and the communication channels can also be supervised. At the same time, synthetically using computer communication, internet technology and database technology, this system can realize the real time monitoring and fault locating in the communication network.
文摘A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power systems worldwide and has led to operation of power systems closer to their stability limits and to power exchange in new patterns. These issues, as well as the on-going worldwide trend towards deregulation of the entire industry on the one hand and the increased need for accurate and better network monitoring on the other hand, force power utilities exposed to this pressure to demand new solutions for wide area monitoring, protection and control. Wide-area monitoring, protection, and control require communicating the specific-node information to a remote station but all information should be time synchronized so that to neutralize the time difference between information. It gives a complete simultaneous snap shot of the power system. The conventional system is not able to satisfy the time-synchronized requirement of power system. Phasor Measurement Unit (PMU) is enabler of time-synchronized measurement, it communicate the synchronized local information to remote station.
文摘In this paper, a network-based monitoring unit for condition monitoring andfault diagnosis of rotating machinery is designed and implemented. With the technology of DSP(Digital signal processing) , TCP/IP, and simultaneous acquisition, a mechanism of multi-process andinter-process communication, the integrating problem of signal acquisition, the data dynamicmanagement and network-based configuration in the embedded condition monitoring system is solved. Itoffers the input function of monitoring information for network-based condition monitoring and afault diagnosis system.
文摘ZJZ-2 system has the following functions: (1) Real-time on-line sampling and FFT analysis (32 channel); (2) Data aquisition, analysis and storage during start-up and shut-down; (3) Alarming, emergency recognition and fault retrieval; (4) Data aquisition, analysis and storage during daily operation; (5) Recall of historic data; (6) Output of routine reports and tables; (7) Analysis of vibration behaviour: Bode plot, polar plot, spectrum, cascade, waveform, shaft orbit, trend, etc;
文摘BACKGROUND Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure(ICP)modalities or unstable to transport for imaging.Ultrasonography-based optic nerve sheath diameter(ONSD)is an attractive option as it is reliable,repeatable and easily performed at the bedside.It has been sufficiently validated in traumatic brain injury(TBI)to be incorporated into the guidelines.However,currently the data for non-TBI patients is inconsistent for a scientific recommendation to be made.AIM To compile the existing evidence for understanding the scope of ONSD in measuring ICP in adult non-traumatic neuro-critical patients.METHODS PubMed,Google Scholar and research citation analysis databases were searched for studies in adult patients with non-traumatic causes of raised ICP.Studies from 2010 to 2024 in English languages were included.RESULTS We found 37 articles relevant to our search.The cutoff for ONSD in predicting ICP varied from 4.1 to 6.3 mm.Most of the articles used cerebrospinal fluid opening pressure followed by raised ICP on computed tomography/magnetic resonance imaging as the comparator parameter.ONSD was also found to be a reliable outcome measure in cases of acute ischaemic stroke,intracerebral bleeding and intracranial infection.However,ONSD is of doubtful utility in septic metabolic encephalopathy,dysnatremias and aneurysmal subarachnoid haemorrhage.CONCLUSION ONSD is a useful tool for the diagnosis of raised ICP in non-traumatic neuro-critically ill patients and may also have a role in the prognostication of a subset of patients.
文摘Objective:To explore the clinical rationale of critical care nurses for personalizing monitor alarms.One of the most crucial jobs assigned to critical care nurses is monitoring patients'physiological indicators and carrying out the necessary associated interventions.Successful use of equipment in the nursing practice environment will be improved by a thorough understanding of the nurse's approach to alarm configuration.Methods:A mixed-method design integrating quantitative and qualitative components was used.The sample of this study recruited a convenience sample of 60 nurses who have worked in critical care areas.This study took place at Lebanese American University Medical Center Rizk Hospital,utilizing a semi-structured interview with participants.Results:The study demonstrated the high incidence of nuisance alarms and the desensitization of critical care nurses to vital ones.According to the nurses,frequent false alarms and a shortage of staff are the 2 main causes of alarm desensitization.Age was significantly associated with the perception of Smart alarms,according to the data(P=0.03).Four interconnected themes and subcategories that reflect the clinical reasoning process for alarm customization were developed as a result of the study's qualitative component:(1)unit alarm environment;(2)nursing style;(3)motivation to customize;and(4)clinical and technological customization.Conclusions:According to this study,nurses believe that alarms are valuable.However,a qualitative analysis of the experiences revealed that customization has been severely limited since the healthcare team depends on nurses to complete these tasks independently.Additionally,a staffing shortage and lack of technical training at the start of placement have also hindered customization.