This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibilit...Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved.展开更多
UAV marine monitoring plays an essential role in marine environmental protection because of its flexibility and convenience,low cost and convenient maintenance.In marine environmental monitoring,the similarity between...UAV marine monitoring plays an essential role in marine environmental protection because of its flexibility and convenience,low cost and convenient maintenance.In marine environmental monitoring,the similarity between objects such as oil spill and sea surface,Spartina alterniflora and algae is high,and the effect of the general segmentation algorithm is poor,which brings new challenges to the segmentation of UAV marine images.Panoramic segmentation can do object detection and semantic segmentation at the same time,which can well solve the polymorphism problem of objects in UAV ocean images.Currently,there are few studies on UAV marine image recognition with panoptic segmentation.In addition,there are no publicly available panoptic segmentation datasets for UAV images.In this work,we collect and annotate UAV images to form a panoptic segmentation UAV dataset named UAV-OUC-SEG and propose a panoptic segmentation method named PanopticUAV.First,to deal with the large intraclass variability in scale,deformable convolution and CBAM attention mechanism are employed in the backbone to obtain more accurate features.Second,due to the complexity and diversity of marine images,boundary masks by the Laplacian operator equation from the ground truth are merged into feature maps to improve boundary segmentation precision.Experiments demonstrate the advantages of PanopticUAV beyond the most other advanced approaches on the UAV-OUC-SEG dataset.展开更多
Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between...Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.展开更多
The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disast...The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%).展开更多
Traditional monitoring systems that are used in shopping malls or com-munity management,mostly use a remote control to monitor and track specific objects;therefore,it is often impossible to effectively monitor the enti...Traditional monitoring systems that are used in shopping malls or com-munity management,mostly use a remote control to monitor and track specific objects;therefore,it is often impossible to effectively monitor the entire environ-ment.Whenfinding a suspicious person,the tracked object cannot be locked in time for tracking.This research replaces the traditionalfixed-point monitor with the intelligent drone and combines the image processing technology and automatic judgment for the movements of the monitored person.This intelligent system can effectively improve the shortcomings of low efficiency and high cost of the traditional monitor system.In this article,we proposed a TIMT(The Intel-ligent Monitoring and Tracking)algorithm which can make the drone have smart surveillance and tracking capabilities.It combined with Artificial Intelligent(AI)face recognition technology and the OpenPose which is able to monitor the phy-sical movements of multiple people in real time to analyze the meaning of human body movements and to track the monitored intelligently through the remote con-trol interface of the drone.This system is highly agile and could be adjusted immediately to any angle and screen that we monitor.Therefore,the system couldfind abnormal conditions immediately and track and monitor them automatically.That is the system can immediately detect when someone invades the home or community,and the drone can automatically track the intruder to achieve that the two significant shortcomings of the traditional monitor will be improved.Experimental results show that the intelligent monitoring and tracking drone sys-tem has an excellent performance,which not only dramatically reduces the num-ber of monitors and the required equipment but also achieves perfect monitoring and tracking.展开更多
Thosea sinensis Walker(TSW)rapidly spreads and severely damages the tea plants.Therefore,finding a reliable operational method for identifying the TSW-damaged areas via remote sensing has been a focus of a research co...Thosea sinensis Walker(TSW)rapidly spreads and severely damages the tea plants.Therefore,finding a reliable operational method for identifying the TSW-damaged areas via remote sensing has been a focus of a research community.Such methods also enable us to calculate the precise application of pesticides and prevent the subsequent spread of the pests.In this work,based on the unmanned aerial vehicle(UAV)platform,five band images of multispectral red-edge camera were obtained and used for monitoring the TSW in tea plantations.By combining the minimum redundancy maximum relevance(mRMR)with the selected spectral features,a comprehensive spectral selection strategy was proposed.Then,based on the selected spectral features,three classic machine learning algorithms,including random forest(RF),support vector machine(SVM),and k-nearest neighbors(KNN)were used to construct the pest monitoring model and were evaluated and compared.The results showed that the strategy proposed in this work obtained ideal monitoring accuracy by only using the combination of a few optimized features(2 or 4).In order to differentiate the healthy and TSW-damaged areas(2-class model),the monitoring accuracies of all the three models were computed,which were above 96%.The RF model used the least number of features,including only SAVI and Bandred.In order to further discriminate the pest incidence levels(3-class model),the monitoring accuracies of all the three models were computed,which were above 80%,among which the RF algorithm based on SAVI,Band_(red),VARI__(green),and Band_(red_edge) features achieve the highest accuracy(OAA of 87%,and Kappa of 0.79).Considering the computational cost and model accuracy,this work recommends the RF model based on a few optimal feature combinations to monitor and distinguish the severity of TSW in tea plantations.According to the UAV remote sensing mapping results,the TSW infestation exhibited an aggregated distribution pattern.The spatial information of occurrence and severity can offer effective guidance for precise control of the pest.In addition,the relevant methods provide a reference for monitoring other leaf-eating pests,effectively improving the management level of plant protection in tea plantations,and guaranting the yield and quality of tea plantations.展开更多
Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM ...Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM process often leads to quality fluctuation of the formed component,which hinders the further development and application of SLM.In situ quality control during SLM process is an effective solution to the quality fluctuation of formed components.However,the basic premise of feedback control during SLM process is the rapid and accurate diagnosis of the quality.Therefore,an in situ monitoring method of SLM process,which provides quality diagnosis information for feedback control,became one of the research hotspots in this field in recent years.In this paper,the research progress of in situ monitoring during SLM process based on images is reviewed.Firstly,the significance of in situ monitoring during SLM process is analyzed.Then,the image information source of SLM process,the image acquisition systems for different detection objects(the molten pool region,the scanned layer and the powder spread layer)and the methods of the image information analysis,detection and recognition are reviewed and analyzed.Through review and analysis,it is found that the existing image analysis and detection methods during SLM process are mainly based on traditional image processing methods combined with traditional machine learning models.Finally,the main development direction of in situ monitoring during SLM process is proposed by combining with the frontier technology of image-based computer vision.展开更多
Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlatio...Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable.展开更多
The monitoring system designed in this paper is on account of YOLOv5(You Only Look Once)to monitor foreign objects on railway tracks and can broadcast the monitoring information to the locomotive in real time.First,th...The monitoring system designed in this paper is on account of YOLOv5(You Only Look Once)to monitor foreign objects on railway tracks and can broadcast the monitoring information to the locomotive in real time.First,the general structure of the system is determined through demand analysis and feasibility analysis,the foreign object intrusion recognition algorithm is designed,and the data set required for foreign object intrusion recognition is made.Secondly,according to the functional demands,the system selects a suitable neural web,and the programming is reasonable.At last,the system is simulated to validate its functionality(identification and classification of track intrusion and determination of a safe operating zone).展开更多
In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring meth...In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring method was proposed in this study,and the major steps of the monitoring method include:firstly,time-series images of the similarity model in the test were obtained by a camera,and secondly,measuring points marked as artificial targets were automatically tracked and recognized from time-series images.Finally,the real-time plane displacement field was calculated by the fixed magnification between objects and images under the specific conditions.And then the application device of the method was designed and tested.At the same time,a sub-pixel location method and a distortion error model were used to improve the measuring accuracy.The results indicate that this method may record the entire test,especially the detailed non-uniform deformation and sudden deformation.Compared with traditional methods this method has a number of advantages,such as greater measurement accuracy and reliability,less manual intervention,higher automation,strong practical properties,much more measurement information and so on.展开更多
[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spat...[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.展开更多
An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and proce...An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and processing methods are illus-trated. The point cloud results are analyzed in detail. The rescale range analysis method was used to analyze the deformation char-acteristics of the slope. The results show that the trend of slope displacement is stable and that the degree of landslide danger is low. This work indicates that 3-D laser image scanning can supply multi-parameter, high precision real time data over long distances. These data can be used to study the distortion of the slope quickly and accurately.展开更多
Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis ...Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis and edge extraction of those segments were done so that changes of roads could be detected. Finally, according to the vector data and gray information of roads which were not changed, road templates were extracted and saved automatically. This method was performed on the World View high resolution image of certain parts in the country. The detection result shows that detection correctness is 79.56% and completeness can reach 97.72%. Moreover, the extracted road templates are essentials for the template matching method of road extraction.展开更多
Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring me...Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring means applied for large-scale landslide monitoring and proposes the method for extensive landslide displacement field monitoring using high- resolution remote images. Matching of cognominal points is realized by using the invariant features of SIFT algorithm in image translation, rotation, zooming, and affine transformation, and through recognition and comparison of characteristics of high-resolution images in different landsliding periods. Following that, landslide displacement vector field can be made known by measuring the distances and directions between cognominal points. As evidenced by field application of the method for landslide monitoring at West Open Mine in Fushun city of China, the method has the attraction of being able to make areal measurement through satellite observation and capable of obtaining at the same time the information of large- area intensive displacement field, for facilitating automatic delimitation of extent of landslide displacement vector field and sliding mass. This can serve as a basis for making analysis of laws governing occurrence of landslide and adoption of countermeasures.展开更多
Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensin...Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.展开更多
Using three-phase remote sensing images of China-Brazil Earth Resources Satellite 02B (CBERS02B) and Landsat-5 TM, tobacco field was extracted by the analysis of time series image based on the different phenological c...Using three-phase remote sensing images of China-Brazil Earth Resources Satellite 02B (CBERS02B) and Landsat-5 TM, tobacco field was extracted by the analysis of time series image based on the different phenological characteristics between tobacco and other crops. The spectral characteristics of tobacco and corn in luxuriant growth stage are very similar, which makes them difficult to be distinguished using a single-phase remote sensing image. Field film after tobacco seedlings transplanting can be used as significant sign to identify tobacco. Remote sensing interpre- tation map based on the fusion image of TM and CBERS02B's High-Resolution (HR) camera image was used as stan- dard reference material to evaluate the classification accuracy of Spectral Angle Mapper (SAM) and Maximum Like- lihood Classifier (MLC) for time series image based on full samples test method. SAM has higher classification accu- racy and stability than MLC in dealing with time series image. The accuracy and Kappa of tobacco coverage extracted by SAM are 83.4% and 0.692 respectively, which can achieve the accuracy required by tobacco coverage measurement in a large area.展开更多
Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This ...Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This paper lays its emphasis on algorithmic skills and programming techniques as well as applicationof the software.展开更多
Acoustic emission ( AE ) features during the fracture process of notched wrought aluminum alloy 7N01 and weld were investigated under the three-point bending load. Wavelet transform is used to investigate the time-f...Acoustic emission ( AE ) features during the fracture process of notched wrought aluminum alloy 7N01 and weld were investigated under the three-point bending load. Wavelet transform is used to investigate the time-frequency features of AE signals during the test. The experimental results showed that AE energy was effective indicators to detect the crack initiation for 7N01 aluminum. The digital images from monitoring the notch tip region of 7 NO1 aluminum sample verify the prediction of AE signals. The weld emits low energy, weak signal strength, and low peak amplitude, while stronger AE energy, amplitude, and more AE event counts for the base metal. In short, the AE technique was more sensitive to the changes in the fracture mode and could be used to monitor the damage development in welded structures.展开更多
To process the traffic monitoring image, a local Histogram Equalization method based on fuzzy mathematics was proposed in this paper. In this paper, firstly, we define a function to measure the similarity degree of tw...To process the traffic monitoring image, a local Histogram Equalization method based on fuzzy mathematics was proposed in this paper. In this paper, firstly, we define a function to measure the similarity degree of two images. Then, a suitable Gaussian fuzzy distribution function was chose to generate a 3 × 3 matrix of influential factors. In order to reduce the artificial boundaries, we combined the 3 × 3 influential matrix with a 3 × 3 smooth filter matrix to get the final smooth-influ- ence matrix. Finally, the smooth-influence matrix was used to process the center block image. The simulation results demonstrated that the proposed method can reduce time consumption while improving the image contrast and can get satisfactory results.展开更多
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
基金supported by a grant from the Basic Science Research Program through the National Research Foundation(NRF)(2021R1F1A1063634)funded by the Ministry of Science and ICT(MSIT),Republic of KoreaThe authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/13/40)+2 种基金Also,the authors are thankful to Prince Satam bin Abdulaziz University for supporting this study via funding from Prince Satam bin Abdulaziz University project number(PSAU/2024/R/1445)This work was also supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R54)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved.
基金This work was partially supported by the National Key Research and Development Program of China under Grant No.2018AAA0100400the Natural Science Foundation of Shandong Province under Grants Nos.ZR2020MF131 and ZR2021ZD19the Science and Technology Program of Qingdao under Grant No.21-1-4-ny-19-nsh.
文摘UAV marine monitoring plays an essential role in marine environmental protection because of its flexibility and convenience,low cost and convenient maintenance.In marine environmental monitoring,the similarity between objects such as oil spill and sea surface,Spartina alterniflora and algae is high,and the effect of the general segmentation algorithm is poor,which brings new challenges to the segmentation of UAV marine images.Panoramic segmentation can do object detection and semantic segmentation at the same time,which can well solve the polymorphism problem of objects in UAV ocean images.Currently,there are few studies on UAV marine image recognition with panoptic segmentation.In addition,there are no publicly available panoptic segmentation datasets for UAV images.In this work,we collect and annotate UAV images to form a panoptic segmentation UAV dataset named UAV-OUC-SEG and propose a panoptic segmentation method named PanopticUAV.First,to deal with the large intraclass variability in scale,deformable convolution and CBAM attention mechanism are employed in the backbone to obtain more accurate features.Second,due to the complexity and diversity of marine images,boundary masks by the Laplacian operator equation from the ground truth are merged into feature maps to improve boundary segmentation precision.Experiments demonstrate the advantages of PanopticUAV beyond the most other advanced approaches on the UAV-OUC-SEG dataset.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(Grant No.SKL-IoTSC(UM)-2021-2023/ORP/GA10/2022)。
文摘Monitoring shear deformation of sliding zones is of great significance for understanding the landslide evolution mechanism,in which fiber optic strain sensing has shown great potential.However,the cor-relation between strain measurements of quasi-distributed fiber Bragg grating(FBG)sensing arrays and shear displacements of surrounding soil remains elusive.In this study,a direct shear model test was conducted to simulate the shear deformation of sliding zones,in which the soil internal deformation was captured using FBG strain sensors and the soil surface deformation was measured by particle image velocimetry(PIV).The test results show that there were two main slip surfaces and two secondary ones,developing a spindle-shaped shear band in the soil.The formation of the shear band was successfully captured by FBG sensors.A sinusoidal model was proposed to describe the fiber optic cable deformation behavior.On this basis,the shear displacements and shear band widths were calculated by using strain measurements.This work provides important insight into the deduction of soil shear deformation using soil-embedded FBG strain sensors.
基金funded by Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,under grant No.(PNURSP2022R161).
文摘The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%).
文摘Traditional monitoring systems that are used in shopping malls or com-munity management,mostly use a remote control to monitor and track specific objects;therefore,it is often impossible to effectively monitor the entire environ-ment.Whenfinding a suspicious person,the tracked object cannot be locked in time for tracking.This research replaces the traditionalfixed-point monitor with the intelligent drone and combines the image processing technology and automatic judgment for the movements of the monitored person.This intelligent system can effectively improve the shortcomings of low efficiency and high cost of the traditional monitor system.In this article,we proposed a TIMT(The Intel-ligent Monitoring and Tracking)algorithm which can make the drone have smart surveillance and tracking capabilities.It combined with Artificial Intelligent(AI)face recognition technology and the OpenPose which is able to monitor the phy-sical movements of multiple people in real time to analyze the meaning of human body movements and to track the monitored intelligently through the remote con-trol interface of the drone.This system is highly agile and could be adjusted immediately to any angle and screen that we monitor.Therefore,the system couldfind abnormal conditions immediately and track and monitor them automatically.That is the system can immediately detect when someone invades the home or community,and the drone can automatically track the intruder to achieve that the two significant shortcomings of the traditional monitor will be improved.Experimental results show that the intelligent monitoring and tracking drone sys-tem has an excellent performance,which not only dramatically reduces the num-ber of monitors and the required equipment but also achieves perfect monitoring and tracking.
基金funded by the Zhejiang Agricultural Cooperative and Extensive Project of Key Technology(2020XTTGCY04-02,2020XTTGCY01-05)the Major Special Project for 2025 Scientific and Technological Innovation(Major Scientific and Technological Task Project in Ningbo City)(2021Z048).
文摘Thosea sinensis Walker(TSW)rapidly spreads and severely damages the tea plants.Therefore,finding a reliable operational method for identifying the TSW-damaged areas via remote sensing has been a focus of a research community.Such methods also enable us to calculate the precise application of pesticides and prevent the subsequent spread of the pests.In this work,based on the unmanned aerial vehicle(UAV)platform,five band images of multispectral red-edge camera were obtained and used for monitoring the TSW in tea plantations.By combining the minimum redundancy maximum relevance(mRMR)with the selected spectral features,a comprehensive spectral selection strategy was proposed.Then,based on the selected spectral features,three classic machine learning algorithms,including random forest(RF),support vector machine(SVM),and k-nearest neighbors(KNN)were used to construct the pest monitoring model and were evaluated and compared.The results showed that the strategy proposed in this work obtained ideal monitoring accuracy by only using the combination of a few optimized features(2 or 4).In order to differentiate the healthy and TSW-damaged areas(2-class model),the monitoring accuracies of all the three models were computed,which were above 96%.The RF model used the least number of features,including only SAVI and Bandred.In order to further discriminate the pest incidence levels(3-class model),the monitoring accuracies of all the three models were computed,which were above 80%,among which the RF algorithm based on SAVI,Band_(red),VARI__(green),and Band_(red_edge) features achieve the highest accuracy(OAA of 87%,and Kappa of 0.79).Considering the computational cost and model accuracy,this work recommends the RF model based on a few optimal feature combinations to monitor and distinguish the severity of TSW in tea plantations.According to the UAV remote sensing mapping results,the TSW infestation exhibited an aggregated distribution pattern.The spatial information of occurrence and severity can offer effective guidance for precise control of the pest.In addition,the relevant methods provide a reference for monitoring other leaf-eating pests,effectively improving the management level of plant protection in tea plantations,and guaranting the yield and quality of tea plantations.
基金financially supported by the KGW Program(Grant No.2019XXX.XX4007Tm)the National Natural Science Foundation of China(Grant Nos.51905188,52090042 and 51775205)。
文摘Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM process often leads to quality fluctuation of the formed component,which hinders the further development and application of SLM.In situ quality control during SLM process is an effective solution to the quality fluctuation of formed components.However,the basic premise of feedback control during SLM process is the rapid and accurate diagnosis of the quality.Therefore,an in situ monitoring method of SLM process,which provides quality diagnosis information for feedback control,became one of the research hotspots in this field in recent years.In this paper,the research progress of in situ monitoring during SLM process based on images is reviewed.Firstly,the significance of in situ monitoring during SLM process is analyzed.Then,the image information source of SLM process,the image acquisition systems for different detection objects(the molten pool region,the scanned layer and the powder spread layer)and the methods of the image information analysis,detection and recognition are reviewed and analyzed.Through review and analysis,it is found that the existing image analysis and detection methods during SLM process are mainly based on traditional image processing methods combined with traditional machine learning models.Finally,the main development direction of in situ monitoring during SLM process is proposed by combining with the frontier technology of image-based computer vision.
文摘Considering the joint effects of various factors such as temporal baseline, spatial baseline, thermal noise, the difference of Doppler centroid frequency and the error of data processing on the interference correlation, an optimum selection method of common master images for ground deformation monitoring based on the permanent scatterer and differential SAR interferometry (PS-DInSAR) technique is proposed, in which the joint correlation coeficient is used as the evaluation function. The principle and realization method of PS-DInSAR technology is introduced, the factors affecting the DInSAR correlation are analysed, and the joint correlation function model and its solution are presented. Finally an experiment for the optimum selection of common master images is performed by using 25 SAR images over Shanghai taken by the ERS-1/2 as test data. The results indicate that the optimum selection method for PS-DInSAR common master images is effective and reliable.
文摘The monitoring system designed in this paper is on account of YOLOv5(You Only Look Once)to monitor foreign objects on railway tracks and can broadcast the monitoring information to the locomotive in real time.First,the general structure of the system is determined through demand analysis and feasibility analysis,the foreign object intrusion recognition algorithm is designed,and the data set required for foreign object intrusion recognition is made.Secondly,according to the functional demands,the system selects a suitable neural web,and the programming is reasonable.At last,the system is simulated to validate its functionality(identification and classification of track intrusion and determination of a safe operating zone).
基金provided by the Program for New Century Excellent Talents in University (No. NCET-06-0477)the Independent Research Project of the State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology (No. SKLCRSM09X01)the Fundamental Research Funds for the Central Universities
文摘In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring method was proposed in this study,and the major steps of the monitoring method include:firstly,time-series images of the similarity model in the test were obtained by a camera,and secondly,measuring points marked as artificial targets were automatically tracked and recognized from time-series images.Finally,the real-time plane displacement field was calculated by the fixed magnification between objects and images under the specific conditions.And then the application device of the method was designed and tested.At the same time,a sub-pixel location method and a distortion error model were used to improve the measuring accuracy.The results indicate that this method may record the entire test,especially the detailed non-uniform deformation and sudden deformation.Compared with traditional methods this method has a number of advantages,such as greater measurement accuracy and reliability,less manual intervention,higher automation,strong practical properties,much more measurement information and so on.
基金Supported by the Key Science and Technology Projects of Guizhou Province,China[(2007)3017,(2008)3022]Major Special Project of Guizhou Province,China(2006-6006-2)
文摘[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.
基金supported by the National "Eleventh Five-Year" Forestry Support Program of China (No2006BAD03A1603)
文摘An ILRIS-36D 3-D laser image scanning system was used to monitor the Anjialing strip mine slope on Pingshuo in Shanxi province. The basic working principles, performance indexes, features and data collection and processing methods are illus-trated. The point cloud results are analyzed in detail. The rescale range analysis method was used to analyze the deformation char-acteristics of the slope. The results show that the trend of slope displacement is stable and that the degree of landslide danger is low. This work indicates that 3-D laser image scanning can supply multi-parameter, high precision real time data over long distances. These data can be used to study the distortion of the slope quickly and accurately.
文摘Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis and edge extraction of those segments were done so that changes of roads could be detected. Finally, according to the vector data and gray information of roads which were not changed, road templates were extracted and saved automatically. This method was performed on the World View high resolution image of certain parts in the country. The detection result shows that detection correctness is 79.56% and completeness can reach 97.72%. Moreover, the extracted road templates are essentials for the template matching method of road extraction.
文摘Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring means applied for large-scale landslide monitoring and proposes the method for extensive landslide displacement field monitoring using high- resolution remote images. Matching of cognominal points is realized by using the invariant features of SIFT algorithm in image translation, rotation, zooming, and affine transformation, and through recognition and comparison of characteristics of high-resolution images in different landsliding periods. Following that, landslide displacement vector field can be made known by measuring the distances and directions between cognominal points. As evidenced by field application of the method for landslide monitoring at West Open Mine in Fushun city of China, the method has the attraction of being able to make areal measurement through satellite observation and capable of obtaining at the same time the information of large- area intensive displacement field, for facilitating automatic delimitation of extent of landslide displacement vector field and sliding mass. This can serve as a basis for making analysis of laws governing occurrence of landslide and adoption of countermeasures.
基金funded by the National Natural Science Foundation of China(Grant No.40571029).
文摘Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.
基金Under the auspices of China Postdoctoral Science Foundation (No. 20080430586, 20070420018)National Natural Science Foundation of China (No. 40801161, 40801172)Sino US International Cooperation in Science and Technology (No. 2007DFA20640)
文摘Using three-phase remote sensing images of China-Brazil Earth Resources Satellite 02B (CBERS02B) and Landsat-5 TM, tobacco field was extracted by the analysis of time series image based on the different phenological characteristics between tobacco and other crops. The spectral characteristics of tobacco and corn in luxuriant growth stage are very similar, which makes them difficult to be distinguished using a single-phase remote sensing image. Field film after tobacco seedlings transplanting can be used as significant sign to identify tobacco. Remote sensing interpre- tation map based on the fusion image of TM and CBERS02B's High-Resolution (HR) camera image was used as stan- dard reference material to evaluate the classification accuracy of Spectral Angle Mapper (SAM) and Maximum Like- lihood Classifier (MLC) for time series image based on full samples test method. SAM has higher classification accu- racy and stability than MLC in dealing with time series image. The accuracy and Kappa of tobacco coverage extracted by SAM are 83.4% and 0.692 respectively, which can achieve the accuracy required by tobacco coverage measurement in a large area.
文摘Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This paper lays its emphasis on algorithmic skills and programming techniques as well as applicationof the software.
文摘Acoustic emission ( AE ) features during the fracture process of notched wrought aluminum alloy 7N01 and weld were investigated under the three-point bending load. Wavelet transform is used to investigate the time-frequency features of AE signals during the test. The experimental results showed that AE energy was effective indicators to detect the crack initiation for 7N01 aluminum. The digital images from monitoring the notch tip region of 7 NO1 aluminum sample verify the prediction of AE signals. The weld emits low energy, weak signal strength, and low peak amplitude, while stronger AE energy, amplitude, and more AE event counts for the base metal. In short, the AE technique was more sensitive to the changes in the fracture mode and could be used to monitor the damage development in welded structures.
文摘To process the traffic monitoring image, a local Histogram Equalization method based on fuzzy mathematics was proposed in this paper. In this paper, firstly, we define a function to measure the similarity degree of two images. Then, a suitable Gaussian fuzzy distribution function was chose to generate a 3 × 3 matrix of influential factors. In order to reduce the artificial boundaries, we combined the 3 × 3 influential matrix with a 3 × 3 smooth filter matrix to get the final smooth-influ- ence matrix. Finally, the smooth-influence matrix was used to process the center block image. The simulation results demonstrated that the proposed method can reduce time consumption while improving the image contrast and can get satisfactory results.