Vladimir Markin proposes a certain construction---a generalisation of syllogistic--in which he uses the constant @ with indef'mite arity. The atomic formulae are of the following sort: S1S2 ...Sm@P1P2...Pn, where re...Vladimir Markin proposes a certain construction---a generalisation of syllogistic--in which he uses the constant @ with indef'mite arity. The atomic formulae are of the following sort: S1S2 ...Sm@P1P2...Pn, where re+n〉0. The standard syllogistic functors are here interpreted as follows: SAP=: S@P SeP=: SP@ SIP=: -SP@ SOP=: ~S@P Markin constructs a system of Fundamental Syllogistic (FS) with constant @ in an axiomatic way. Based on Markin's idea, we propose two constructions, which are formulations of the system of sequential predication built upon the quantifier-less calculus of names. The first one includes the FS system. The second one is enriched with individual variables and, among other things, allows including sequences of individual names in which one has to do with enumerative functors. The counterpart of Hao Wang's algorithm holds in the first system extended with negative terms.展开更多
文摘Vladimir Markin proposes a certain construction---a generalisation of syllogistic--in which he uses the constant @ with indef'mite arity. The atomic formulae are of the following sort: S1S2 ...Sm@P1P2...Pn, where re+n〉0. The standard syllogistic functors are here interpreted as follows: SAP=: S@P SeP=: SP@ SIP=: -SP@ SOP=: ~S@P Markin constructs a system of Fundamental Syllogistic (FS) with constant @ in an axiomatic way. Based on Markin's idea, we propose two constructions, which are formulations of the system of sequential predication built upon the quantifier-less calculus of names. The first one includes the FS system. The second one is enriched with individual variables and, among other things, allows including sequences of individual names in which one has to do with enumerative functors. The counterpart of Hao Wang's algorithm holds in the first system extended with negative terms.