Background:The adhesion of monocytes to the endothelium following accumulation of low-density lipoprotein (LDL) in subendothelial spaces is an important step in the development of intimal hyperplasia in arterially imp...Background:The adhesion of monocytes to the endothelium following accumulation of low-density lipoprotein (LDL) in subendothelial spaces is an important step in the development of intimal hyperplasia in arterially implanted vein grafts and atherosclerosis in both animals and humans. However, it is not well known how serum factors affect the adhesion of monocytes. Methods: We have studied the effect of fetal calf serum (FCS), which we considered a source of LDL, on the adhesion of monocytes to endothelial cells (ECs) by using human monocytic THP-1 cells and both a monolayer of cultured bovine aortic endothelial cells (EC monoculture) and a co-culture with bovine aortic smooth muscle cells (EC-SMC co-culture). Results: It was found that the addition of FCS to the medium greatly affected the adhesion of THP-1 cells, and the higher the concentration of FCS in the medium, the greater the adhesion of THP-1 cells to endothelial cells. Adhesion of THP-1 cells to an EC-SMC co-culture was approximately twofold greater than that to an EC monoculture, and after adhering to endothelial cells, many THP-1 cells trans-migrated into the layer of smooth muscle cells. Conclusion: The results suggest that the elevation of the LDL (cholesterol) level in blood provides a favorable condition for the development of intimal hyperplasia and atherosclerosis by promoting the adhesion of monocytes to the endothelium and their subsequent migration into subendothelial spaces.展开更多
Objective:To investigate the effect of malarial pigment(hemozoin,HZ) on expression of heat shock proteins(HSPs) and cell viability in human monocytes by using a stable cell line(THP-1 cells).Methods:THP-1 cells were f...Objective:To investigate the effect of malarial pigment(hemozoin,HZ) on expression of heat shock proteins(HSPs) and cell viability in human monocytes by using a stable cell line(THP-1 cells).Methods:THP-1 cells were fed with native HZ or treated with pro-apoptotic molecule gliotoxin for 9 h.Thereafter,the protein expression of HSP-27 and HSP-70 was evaluated by western blotting.Alternatively,HZ-fed cells were cultured up to 72 h and cell viability parameters(survival,apoptosis and necrosis rates) were measured by flow cytometric analysis. Results:HZ increased basal protein levels of HSP-27 without altering those of HSP-70 in THP-1 cells,and promoted long-term cell survival without inducing apoptosis.As expected,gliotoxin inhibited HSP-27 protein expression and promoted long-term cell apoptosis.Conclusions: Present data show that HZ prevents cell apoptosis and enhances the expression of anli-apoptotic HSP-27 in THP-1 cells,confirming the previous evidences obtained from HZ-fed immunopurified monocytes.Since the use of a stable cell line is pivotal to perform HSP-27 silencing experiments, monocytic THP-1 cells could be a good candidate line for such an approach,which is heavily required to clarify the role of HSP-27 in survival of impaired HZ-fed monocytes during falciparum malaria.展开更多
Objective: To study the chemotactic superfamily genes expression profiling of macrophage line U937 treated with monocyte chemoattractant protein-1 (MCP-1) using gene chip technique. Methods: Total RNA from macrophage ...Objective: To study the chemotactic superfamily genes expression profiling of macrophage line U937 treated with monocyte chemoattractant protein-1 (MCP-1) using gene chip technique. Methods: Total RNA from macrophage line U937 (as control) and U937 with MCP-1 was extracted, made reverse transcript to cDNA and tested with gene expression chip HO2 human. Results: Some chemotactic-related gene expressions were changed in all analyzed genes. Regulated upon activation, normal T cell expressed and secreted (RANTES) was up-regulated over 2-fold and 7 chemotactic-related genes (CCR2, CCR5, CCL16, GROβ, GROγ, IL-8 and granulocyte chemotactic protein 2) were down-regulated over 2-fold in MCP-1 treated U937 cells at mRNA level. Conclusion: MCP-1 can influence some chemokines and receptors expression in macrophage in vitro, in which MCP-1 mainly down-regulates the chemotactic genes expression of those influencing neutrophilic granulocyte (GROβ, GROγ, IL-8 and granulocyte chemotactic protein 2). Another novel finding is that it can also down-regulate the mRNA level of CCR5, which plays a critical role in many disorders and illnesses.展开更多
Activation of macrophages is a key event for the pathogenesis of various inflammatory diseases.Notch signaling pathway recently has been found to be a critical pathway in the activation of proinflammatory macrophages....Activation of macrophages is a key event for the pathogenesis of various inflammatory diseases.Notch signaling pathway recently has been found to be a critical pathway in the activation of proinflammatory macrophages.Salidroside (Sal),one of main bioactive components in Rhodiola crenulata (Hook.F.et Thoms) H.ohba,reportedly possesses anti-inflammatory activity and ameliorates inflammation in alcohol-induced hepatic injury.However,whether Sal regulates the activation of proinflammatory macrophages through Notch signaling pathway remains unknown.The present study investigated the effects of Sal on macrophage activation and its possible mechanisms by using both alcohol and lipopolysaccharide (LPS) to mimic the microenvironment of alcoholic liver.Detection of THP-1-derived macrophages exhibited that Sal could significantly decrease the expression of tumor necrosis factor-α(TNF-α),interleukinbeta (IL-1β)and IL-6 in the macrophages at both mRNA and protein levels.Furthermore,Sal significantly suppressed NF-kB activation via Notch-Hes signaling pathway in a dose-dependent manner.Moreover,in the microenvironment of alcoholic liver,the expression of Notch-dependent pyruvate dehydrogenase phosphatase 1 (PDP1) was elevated,and that of Ml gene expression [inducible NO synthase (NOS2)] was up-regulated.These changes could all be effectively ameliorated by Sal.The aforementioned findings demonstrated that Sal could inhibit LPS-ethanol-induced activation of proinflammatory macrophages via Notch signaling pathway.展开更多
Summary:In this study,we investigated the effects of nucleolin on lipopolysaccharide(LPS)-induced activation of MAPK and NF-KappaB(NF-kB)signaling pathways and secretion of TNF-a,IL-1βand HMGB1 in THP-1 monocytes.Imm...Summary:In this study,we investigated the effects of nucleolin on lipopolysaccharide(LPS)-induced activation of MAPK and NF-KappaB(NF-kB)signaling pathways and secretion of TNF-a,IL-1βand HMGB1 in THP-1 monocytes.Immunofluorescence assay and Western blotting were used to identify the nucleolin expression in cell membrane,cytoplasm and nucleus of THP-1 monocytes.Inactivation of nucleolin was induced by neutralizing antibody against nucleolin.THP-1 monocytes were pretreated with anti-nucleolin antibody for 1 h prior to LPS challenge.The irrelevant IgG group was used as control.Secretion of inflammatory mediators(TNF-a,IL-1β and HMGB1)and activation of MAPK and NF-kB/I-kB signaling pathways were examined to assess the effects of nucleolin on LPS-mediated inflammatory response.Nucleolin existed in cell membrane,cytoplasm and nucleus of THP-1 monocytes.Pretreatment of anti-nucleolin antibody significantly inhibited the LPS-induced secretion of TNF-a,IL-1β and HMGB1.P38,JNK,ERK and NF-κB subunit p65 inhibitors could significantly inhibit the secretion of IL-1β,TNF-a and HMGB1 induced by LPS.Moreover,the phosphorylation of p38,JNK,ERK and p65(or nuclear translocation of p65)was significantly increased after LPS challenge.In contrast,pretreatment of anti-nucleolin antibody could significantly inhibit the LPS-induced phosphorylation of p38,JNK,ERK and p65(or nuclear translocation of p65).However,the irrelevant IgG,as a negative control,had no effect on LPS-induced secretion of TNF-a and IL-Iβ and phosphorylation of p38,JNK,ERK and p65(or nuclear translocation of p65).We demonstrated that nucleolin mediated the LPS-induced activation of MAPK and NF-κB signaling pathways,and regulated the secretion of inflammatory mediators(TNF-a,IL-1β and HMGB1).展开更多
基金a Grant-in-Aid for Scientific Research onPriority Areas (No. 15086201) from the Ministry of Education, Culture, Sports, Science and Technology of Japanthe Health Bureauof Zhejiang Province (No. 2007B132), China
文摘Background:The adhesion of monocytes to the endothelium following accumulation of low-density lipoprotein (LDL) in subendothelial spaces is an important step in the development of intimal hyperplasia in arterially implanted vein grafts and atherosclerosis in both animals and humans. However, it is not well known how serum factors affect the adhesion of monocytes. Methods: We have studied the effect of fetal calf serum (FCS), which we considered a source of LDL, on the adhesion of monocytes to endothelial cells (ECs) by using human monocytic THP-1 cells and both a monolayer of cultured bovine aortic endothelial cells (EC monoculture) and a co-culture with bovine aortic smooth muscle cells (EC-SMC co-culture). Results: It was found that the addition of FCS to the medium greatly affected the adhesion of THP-1 cells, and the higher the concentration of FCS in the medium, the greater the adhesion of THP-1 cells to endothelial cells. Adhesion of THP-1 cells to an EC-SMC co-culture was approximately twofold greater than that to an EC monoculture, and after adhering to endothelial cells, many THP-1 cells trans-migrated into the layer of smooth muscle cells. Conclusion: The results suggest that the elevation of the LDL (cholesterol) level in blood provides a favorable condition for the development of intimal hyperplasia and atherosclerosis by promoting the adhesion of monocytes to the endothelium and their subsequent migration into subendothelial spaces.
基金supported by University of Torino Intramural Funds to GG and by grants to MP from the Compagnia di San Paolo,Torino,in the context of the Italian Malaria Network
文摘Objective:To investigate the effect of malarial pigment(hemozoin,HZ) on expression of heat shock proteins(HSPs) and cell viability in human monocytes by using a stable cell line(THP-1 cells).Methods:THP-1 cells were fed with native HZ or treated with pro-apoptotic molecule gliotoxin for 9 h.Thereafter,the protein expression of HSP-27 and HSP-70 was evaluated by western blotting.Alternatively,HZ-fed cells were cultured up to 72 h and cell viability parameters(survival,apoptosis and necrosis rates) were measured by flow cytometric analysis. Results:HZ increased basal protein levels of HSP-27 without altering those of HSP-70 in THP-1 cells,and promoted long-term cell survival without inducing apoptosis.As expected,gliotoxin inhibited HSP-27 protein expression and promoted long-term cell apoptosis.Conclusions: Present data show that HZ prevents cell apoptosis and enhances the expression of anli-apoptotic HSP-27 in THP-1 cells,confirming the previous evidences obtained from HZ-fed immunopurified monocytes.Since the use of a stable cell line is pivotal to perform HSP-27 silencing experiments, monocytic THP-1 cells could be a good candidate line for such an approach,which is heavily required to clarify the role of HSP-27 in survival of impaired HZ-fed monocytes during falciparum malaria.
文摘Objective: To study the chemotactic superfamily genes expression profiling of macrophage line U937 treated with monocyte chemoattractant protein-1 (MCP-1) using gene chip technique. Methods: Total RNA from macrophage line U937 (as control) and U937 with MCP-1 was extracted, made reverse transcript to cDNA and tested with gene expression chip HO2 human. Results: Some chemotactic-related gene expressions were changed in all analyzed genes. Regulated upon activation, normal T cell expressed and secreted (RANTES) was up-regulated over 2-fold and 7 chemotactic-related genes (CCR2, CCR5, CCL16, GROβ, GROγ, IL-8 and granulocyte chemotactic protein 2) were down-regulated over 2-fold in MCP-1 treated U937 cells at mRNA level. Conclusion: MCP-1 can influence some chemokines and receptors expression in macrophage in vitro, in which MCP-1 mainly down-regulates the chemotactic genes expression of those influencing neutrophilic granulocyte (GROβ, GROγ, IL-8 and granulocyte chemotactic protein 2). Another novel finding is that it can also down-regulate the mRNA level of CCR5, which plays a critical role in many disorders and illnesses.
基金This study was supported by the National Natural Science Foundation of China (No.81572274).
文摘Activation of macrophages is a key event for the pathogenesis of various inflammatory diseases.Notch signaling pathway recently has been found to be a critical pathway in the activation of proinflammatory macrophages.Salidroside (Sal),one of main bioactive components in Rhodiola crenulata (Hook.F.et Thoms) H.ohba,reportedly possesses anti-inflammatory activity and ameliorates inflammation in alcohol-induced hepatic injury.However,whether Sal regulates the activation of proinflammatory macrophages through Notch signaling pathway remains unknown.The present study investigated the effects of Sal on macrophage activation and its possible mechanisms by using both alcohol and lipopolysaccharide (LPS) to mimic the microenvironment of alcoholic liver.Detection of THP-1-derived macrophages exhibited that Sal could significantly decrease the expression of tumor necrosis factor-α(TNF-α),interleukinbeta (IL-1β)and IL-6 in the macrophages at both mRNA and protein levels.Furthermore,Sal significantly suppressed NF-kB activation via Notch-Hes signaling pathway in a dose-dependent manner.Moreover,in the microenvironment of alcoholic liver,the expression of Notch-dependent pyruvate dehydrogenase phosphatase 1 (PDP1) was elevated,and that of Ml gene expression [inducible NO synthase (NOS2)] was up-regulated.These changes could all be effectively ameliorated by Sal.The aforementioned findings demonstrated that Sal could inhibit LPS-ethanol-induced activation of proinflammatory macrophages via Notch signaling pathway.
基金This work was supported by grants from Bureau of Science and Technology of Changsha,China(No.Kq 1701007)Hunan Natural Science Foundation,China(No.2018JJ6127).
文摘Summary:In this study,we investigated the effects of nucleolin on lipopolysaccharide(LPS)-induced activation of MAPK and NF-KappaB(NF-kB)signaling pathways and secretion of TNF-a,IL-1βand HMGB1 in THP-1 monocytes.Immunofluorescence assay and Western blotting were used to identify the nucleolin expression in cell membrane,cytoplasm and nucleus of THP-1 monocytes.Inactivation of nucleolin was induced by neutralizing antibody against nucleolin.THP-1 monocytes were pretreated with anti-nucleolin antibody for 1 h prior to LPS challenge.The irrelevant IgG group was used as control.Secretion of inflammatory mediators(TNF-a,IL-1β and HMGB1)and activation of MAPK and NF-kB/I-kB signaling pathways were examined to assess the effects of nucleolin on LPS-mediated inflammatory response.Nucleolin existed in cell membrane,cytoplasm and nucleus of THP-1 monocytes.Pretreatment of anti-nucleolin antibody significantly inhibited the LPS-induced secretion of TNF-a,IL-1β and HMGB1.P38,JNK,ERK and NF-κB subunit p65 inhibitors could significantly inhibit the secretion of IL-1β,TNF-a and HMGB1 induced by LPS.Moreover,the phosphorylation of p38,JNK,ERK and p65(or nuclear translocation of p65)was significantly increased after LPS challenge.In contrast,pretreatment of anti-nucleolin antibody could significantly inhibit the LPS-induced phosphorylation of p38,JNK,ERK and p65(or nuclear translocation of p65).However,the irrelevant IgG,as a negative control,had no effect on LPS-induced secretion of TNF-a and IL-Iβ and phosphorylation of p38,JNK,ERK and p65(or nuclear translocation of p65).We demonstrated that nucleolin mediated the LPS-induced activation of MAPK and NF-κB signaling pathways,and regulated the secretion of inflammatory mediators(TNF-a,IL-1β and HMGB1).