期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The biological fate of the polymer nanocarrier material monomethoxy poly(ethylene glycol)-block-poly(D,L-lactic acid)in rat 被引量:2
1
作者 Xiangjun Meng Zhi Zhang +3 位作者 Jin Tong Hui Sun John Paul Fawcett Jingkai Gu 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2021年第4期1003-1009,共7页
Monomethoxy poly(ethylene glycol)-block-poly(D,L-lactic acid)(PEG-PLA)is a typical amphiphilic di-block copolymer widely used as a nanoparticle carrier(nanocarrier)in drug delivery.Understanding the in vivo fate of PE... Monomethoxy poly(ethylene glycol)-block-poly(D,L-lactic acid)(PEG-PLA)is a typical amphiphilic di-block copolymer widely used as a nanoparticle carrier(nanocarrier)in drug delivery.Understanding the in vivo fate of PEG-PLA is required to evaluate its overall safety and promote the development of PEG-PLA-based nanocarrier drug delivery systems.However,acquiring such understanding is limited by the lack of a suitable analytical method for the bioassay of PEG-PLA.In this study,the pharmacokinetics,biodistribution,metabolism and excretion of PEG-PLA were investigated in rat after intravenous administration.The results show that unchanged PEG-PLA is mainly distributed to spleen,liver,and kidney before being eliminated in urine over 48 h mainly(>80%)in the form of its PEG metabolite.Our study provides a clear and comprehensive picture of the in vivo fate of PEG-PLA which we anticipate will facilitate the scientifc design and safety evaluation of PEG-PLA-based nanocarrier drug delivery systems and thereby enhance their clinical development. 展开更多
关键词 monomethoxy poly(ethylene glycol)-block-poly(D L-lactic acid) POLYMER Nanocarrier material Pharmacokinetics Biodistribution Metabolism Excretion RAT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部