The angular resolution of radar is of crucial signifi-cance to its tracking performance.In this paper,a super-resolu-tion parameter estimation algorithm based on wide-narrowband joint processing is proposed to improve...The angular resolution of radar is of crucial signifi-cance to its tracking performance.In this paper,a super-resolu-tion parameter estimation algorithm based on wide-narrowband joint processing is proposed to improve the angular resolution of wideband monopulse radar.The range cells containing resolv-able scattering points are detected in the wideband mode,and these range cells are adopted to estimate part of the target parameters by algorithms of low computational requirement.Then,the likelihood function of the echo is constructed in the narrow-band mode to estimate the rest of the parameters,and the parameters estimated in the wideband mode are employed to reduce computation and enhance estimation accuracy.Simu-lation results demonstrate that the proposed algorithm has higher estimation accuracy and lower computational complexity than the current algorithm and can avoid the risk of model mis-match.展开更多
Only in the presence of sidelobe jamming (SLJ), can the conventional adaptive monopulse technique null the jamming effectively and maintain the monopulse angle estimation accuracy simultaneously. While mainlobe jamm...Only in the presence of sidelobe jamming (SLJ), can the conventional adaptive monopulse technique null the jamming effectively and maintain the monopulse angle estimation accuracy simultaneously. While mainlobe jamming (MLJ) exists, the mainlobe of adaptive pattern will subject to serious distortion, which results in a failure of detecting and tracking targets by monopulse technique. Therefore, a monopulse angle estimation algorithm based on combining sum-difference beam and auxiliary beam is presented. This algorithm utilizes both high gain difference beams and high gain auxiliary beams for cancelling the mainlobe jammer and multiple sidelobe jammers (SLJs) while keeping an adap- tive monopulse ratio. Theoretical analysis and simulation results indicate that the serious invalidation of monopulse technique in MLJ and SLJs scenarios is resolved well, which improves the monopulse angle accuracy greatly. Furthermore, the proposed algorithm is of simple implementation and low computational complexity.展开更多
To avoid the complicated motion compensation in interferometric inverse synthetic aperture(InISAR)and achieve realtime three-dimensional(3 D)imaging,a novel approach for 3 D imaging of the target only using a single e...To avoid the complicated motion compensation in interferometric inverse synthetic aperture(InISAR)and achieve realtime three-dimensional(3 D)imaging,a novel approach for 3 D imaging of the target only using a single echo is presented.This method is based on an isolated scatterer model assumption,thus the scatterers in the beam can be extracted individually.The radial range of each scatterer is estimated by the maximal likelihood estimation.Then,the horizontal and vertical wave path difference is derived by using the phase comparison technology for each scatterer,respectively.Finally,by utilizing the relationship among the 3 D coordinates,the radial range,the horizontal and vertical wave path difference,the 3 D image of the target can be reconstructed.The reconstructed image is free from the limitation in InISAR that the image plane depends on the target's own motions and on its relative position with respect to the radar.Furthermore,a phase ambiguity resolution method is adopted to ensure the success of the 3 D imaging when phase ambiguity occurs.It can be noted that the proposed phase ambiguity resolution method only uses one antenna pair and does not require a priori knowledge,whereas the existing phase ambiguity methods may require two or more antenna pairs or a priori knowledge for phase unwarping.To evaluate the performance of the proposed method,the theoretical analyses on estimation accuracy are presented and the simulations in various scenarios are also carried out.展开更多
In this paper,we proposed a monopulse forward-looking high-resolution imaging algorithm based on adaptive iteration for missile-borne detector.Through iteration,the proposed algorithm automatically selects the echo si...In this paper,we proposed a monopulse forward-looking high-resolution imaging algorithm based on adaptive iteration for missile-borne detector.Through iteration,the proposed algorithm automatically selects the echo signal of isolated strong-scattering points from the receiving echo signal data to accurately estimate the actual optimal monopulse response curve(MRC) of the same distance range,and we applied optimal MRC to realize the azimuth self-focusing in the process of imaging.We use real-time echo data to perform error correction for obtaining the optimal MRC,and the azimuth angulation accuracy may reach the optimum at a certain distance dimension.We experimentally demonstrate the validity,reliability and high performance of the proposed algorithm.The azimuth angulation accuracy may reach up to ten times of the detection beam-width.The simulation experiments have verified the feasibility of this strategy,with the average height measurement error being 7.8%.In the out-field unmanned aerial vehicle(UAV) tests,the height measurement error is less than 25 m,and the whole response time can satisfy the requirements of a missile-borne detector.展开更多
A new recursive algorithm with the partial parallel structure based on the linearly constrained minimum variance (LCMV) criterion for adaptive monopulse systems is proposed. The weight vector associated with the ori...A new recursive algorithm with the partial parallel structure based on the linearly constrained minimum variance (LCMV) criterion for adaptive monopulse systems is proposed. The weight vector associated with the original whole antenna array is decomposed into several adaptive weight sub-vectors firstly. An adaptive algorithm based on the conventional LCMV principle is then deduced to update the weight sub-vectors for sum and difference beam, respectively. The optimal weight vector can be obtained after convergence. The required computational complexity is evaluated for the proposed technique, which is on the order of O(N) and less than that of the conventional LCMV method. The flow chart scheme with the partial parallel structure of the proposed algorithm is introduced. This scheme is easy to be implemented on a distributed computer/digital signal processor (DSP) system to solve the problems of the heavy computational burden and vast data transmission of the large-scale adaptive monopulse array. Then, the monopulse ratio and convergence rate of the proposed algorithm are evaluated by numerical simulations. Compared with some recent adaptive monopulse estimation methods, a better performance on computational complexity and monopulse ratio can be achieved with the proposed adaptive method.展开更多
The near field distribution and far field pattern of a monopulse ring focus shaped reflector antenna are studied. The four fold integral appearing in the formulation by using PO method is converted into a triple i...The near field distribution and far field pattern of a monopulse ring focus shaped reflector antenna are studied. The four fold integral appearing in the formulation by using PO method is converted into a triple integral for the near field case and a double integral for the far field case by applying the Fourier series expansion. Good agreements have been achieved between theoretical and experimental results.展开更多
Traditional monopulse radar cannot resolve two targets present in one range and Doppler cell by means of the monopulse ratio. A novel algorithm is proposed to estimate the directions of two steady targets with two pul...Traditional monopulse radar cannot resolve two targets present in one range and Doppler cell by means of the monopulse ratio. A novel algorithm is proposed to estimate the directions of two steady targets with two pulses. The algorithm has a closedform expression and its variance is derived at high signal-to-noise ratios(SNRs). Furthermore, the pulse pair selection criterion and the estimation method with multiple pulses are given. Finally, some numerical results are shown to validate the proposed algorithm and the effect of slight target fluctuations is tested.展开更多
A monopulse angle measurement method for polarization array radar is studied in this paper.The receiving signal model is established and then a monopulse angle measurement method based on virtual polarization matching...A monopulse angle measurement method for polarization array radar is studied in this paper.The receiving signal model is established and then a monopulse angle measurement method based on virtual polarization matching is proposed.To analyze the estimation performance,the Cramer-Rao Lower Bound(CRLB)of angle estimation is derived.Both theoretical analysis and simulation show that:firstly,the proposed method is superior to the traditional angle measurement methods based on the single polarization.Secondly,the performance of the new method is unrelated to the echo polarization.Thirdly,angle estimation of this method is asymptotically optimal.The results show that this method has great potential to be used in polarization array radar.展开更多
Monopulse slot antenna arrays based on substrate integrated waveguide (SIW) are proposed for the application of 60 GHz mono- pulse tracking systems in this paper. The sum-difference monopulse comparator can provide ...Monopulse slot antenna arrays based on substrate integrated waveguide (SIW) are proposed for the application of 60 GHz mono- pulse tracking systems in this paper. The sum-difference monopulse comparator can provide a high amplitude and phase balance over wide frequency band and no phase delay technique is required for the difference channel. Resonant slot antennas are adopted as the radiating elements since they can be integrated with the sum-difference monopulse comparator in a single layer with a compact size. Two monopulse arrays with 2× 4 and 4×4 slot elements are designed, fabricated, and measured. Measured results show that the proposed antenna arrays have wide bandwidth covering the unlicensed 60-GHz band. The peak sum beam gain is 13.85 dBi for the 2 ×4 element array and 16.24 dBi for the 4×4 element array. The peak difference beam gain is 11.20 dBi for the 2×4 element array and 12.11 dBi for the 4×4 element array and the maximum null depth can reach -40 dB.展开更多
Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitud...Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.展开更多
The classical detection step in a monopulse radar system is based on the sum beam only, the performance of which is not optimal when target is not at the beam center. Target detection aided by the difference beam can ...The classical detection step in a monopulse radar system is based on the sum beam only, the performance of which is not optimal when target is not at the beam center. Target detection aided by the difference beam can improve the performance at this case. However, the existing difference beam aided target detectors have the problem of performance deterioration at the beam center, which has limited their application in real systems. To solve this problem, two detectors are proposed in this paper. Assuming the monopulse ratio is known, a generalized likelihood ratio test (GLRT) detector is derived, which can be used when targeting information on target direction is available. A practical dual-stage detector is proposed for the case that the monopulse ratio is unknown. Simulation results show that performances of the proposed detectors are superior to that of the classical detector.展开更多
This paper presents an approach for mitigating the cross-eye jamming using a dual-polarization array. By transmitting a sum beam and a difference beam in two orthogonal polarimetric channels, a synthesized transmitted...This paper presents an approach for mitigating the cross-eye jamming using a dual-polarization array. By transmitting a sum beam and a difference beam in two orthogonal polarimetric channels, a synthesized transmitted beam with spatially varying polarization is produced, such that the polarization of the transmitted radar wave varies in azimuth or elevation. Thus, the phases of the signals received on the two antennas of a cross-eye jammer become unequal, and an additional phase difference is introduced to disrupt the 180? phase shifting in the retrodirective loop of the jammer. By means of beam scanning in a small angular range,the optimal beam steering configuration can be found to maximize the phase error for the mitigation of cross-eye jamming. As a result, the jamming performance of the cross-eye jammer degrades largely. Theoretical analysis and simulation results indicate that the proposed method is valid and feasible.展开更多
The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase ...The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase of the skin return. Although the median value of the total cross-eye gain distribution had been analyzed in previous studies, the extreme values providing useful indications of the upper and lower bounds of the total cross-eye gain have not been analyzed until now. In this paper, the cumulative distribution function and the extreme values of the total cross-eye gain of MRCJ are derived. The angular error induced in threat monopulse radar as a figure of merit is used to analyze the performance of MRCJ system. Simulation results demonstrate the variation of the angular error and discuss the proper value of jamming-to-signal ratio(JSR) making the MRCJ system more effective in consideration of the whole distribution of the total cross-eye gain.展开更多
When the returns come from two or more unresolved targets (the signals are not resolved in the frequency or time domains) in a monopulse radar system, the direction-of-arrival (DOA)estimate indicated by the monopulse ...When the returns come from two or more unresolved targets (the signals are not resolved in the frequency or time domains) in a monopulse radar system, the direction-of-arrival (DOA)estimate indicated by the monopulse ratio is not the true information of the tracked target.Then the tracking systems is influenced. An approach has been proposed to detect whether the returns come from a single target or two unresolved targets. The above approach is extended from two to three unresolved targets. The simulation indicates that the detection probability under the three unresolved targets is not sure to exceed the detection probability under the two unresolved targets.展开更多
A new method is presented to improve guidance precision. This method is based on bistatic synthetic aperture radar. The illuminator works in side looking mode, providing the synthetic aperture and the receiver is disp...A new method is presented to improve guidance precision. This method is based on bistatic synthetic aperture radar. The illuminator works in side looking mode, providing the synthetic aperture and the receiver is disposed on the seeker which operates in the forward looking mode. The receiving antenna is composed of four sub-antennas and so four synthetic aperture radar (SAR) images are to be generated. Target is positioned in SAR images by image matching. The bearing and elevation of image element of target are measured by the principle of monopulse angular measurement. Theory of the proposed method is derived and simulation on bearing measurement is done. Simulation shows that the method is valid and if SNR of target's image is above 30 dB, the angular measuring difference is within the confines of 0.04 degree.展开更多
Cross-eye jamming is an electronic attack technique that induces an angular error in the monopulse radar by artificially creating a false target and deceiving the radar into detecting and tracking it.Presently,there i...Cross-eye jamming is an electronic attack technique that induces an angular error in the monopulse radar by artificially creating a false target and deceiving the radar into detecting and tracking it.Presently,there is no effective anti-jamming method to counteract cross-eye jamming.In our study,through detailed analysis of the jamming mechanism,a multi-target model for a cross-eye jamming scenario is established within a random finite set framework.A novel anti-jamming method based on multitarget tracking using probability hypothesis density filters is subsequently developed by combining the characteristic differences between target and jamming with the releasing process of jamming.The characteristic differences between target and jamming and the releasing process of jamming are used to optimize particle partitioning.Particle identity labels that represent the properties of target and jamming are introduced into the detection and tracking processes.The release of cross-eye jamming is detected by estimating the number of targets in the beam,and the distinction between true targets and false jamming is realized through correlation and transmission between labels and estimated states.Thus,accurate tracking of the true targets is achieved under severe jamming conditions.Simulation results showed that the proposed method achieves a minimum delay in detection of cross-eye jamming and an accurate estimation of the target state.展开更多
A novel measurement method of temperature model for bioreactor has been proposed.Temperature is the key parameter in monitoring the bioreactor operation.However,the system input signal of bioreactor is delayed,and mod...A novel measurement method of temperature model for bioreactor has been proposed.Temperature is the key parameter in monitoring the bioreactor operation.However,the system input signal of bioreactor is delayed,and model parameters are uncertain,so the output of temperature is non-steady-state.Many dynamic measurements are not steady so that it cannot be described by variables constant in time.In this paper,we adopt the monopulse signal as input so that the output of the bioreactor system is steady.This method has a powerful ability to steady the output of the bioreactor.In view of the measurement results,it can be seen that the model dynamic measurement approaches the real process.The analytical expression of the monopulse response for the temperature model of the bioreactor is obtained.The novel measurement approach is simple and can be easily adopted by industry.展开更多
文摘The angular resolution of radar is of crucial signifi-cance to its tracking performance.In this paper,a super-resolu-tion parameter estimation algorithm based on wide-narrowband joint processing is proposed to improve the angular resolution of wideband monopulse radar.The range cells containing resolv-able scattering points are detected in the wideband mode,and these range cells are adopted to estimate part of the target parameters by algorithms of low computational requirement.Then,the likelihood function of the echo is constructed in the narrow-band mode to estimate the rest of the parameters,and the parameters estimated in the wideband mode are employed to reduce computation and enhance estimation accuracy.Simu-lation results demonstrate that the proposed algorithm has higher estimation accuracy and lower computational complexity than the current algorithm and can avoid the risk of model mis-match.
基金supported by the National Natural Science Foundation of China(60925005)
文摘Only in the presence of sidelobe jamming (SLJ), can the conventional adaptive monopulse technique null the jamming effectively and maintain the monopulse angle estimation accuracy simultaneously. While mainlobe jamming (MLJ) exists, the mainlobe of adaptive pattern will subject to serious distortion, which results in a failure of detecting and tracking targets by monopulse technique. Therefore, a monopulse angle estimation algorithm based on combining sum-difference beam and auxiliary beam is presented. This algorithm utilizes both high gain difference beams and high gain auxiliary beams for cancelling the mainlobe jammer and multiple sidelobe jammers (SLJs) while keeping an adap- tive monopulse ratio. Theoretical analysis and simulation results indicate that the serious invalidation of monopulse technique in MLJ and SLJs scenarios is resolved well, which improves the monopulse angle accuracy greatly. Furthermore, the proposed algorithm is of simple implementation and low computational complexity.
基金supported by the Science and Technique Commission Foundation of Fujian Province(2018H6023)。
文摘To avoid the complicated motion compensation in interferometric inverse synthetic aperture(InISAR)and achieve realtime three-dimensional(3 D)imaging,a novel approach for 3 D imaging of the target only using a single echo is presented.This method is based on an isolated scatterer model assumption,thus the scatterers in the beam can be extracted individually.The radial range of each scatterer is estimated by the maximal likelihood estimation.Then,the horizontal and vertical wave path difference is derived by using the phase comparison technology for each scatterer,respectively.Finally,by utilizing the relationship among the 3 D coordinates,the radial range,the horizontal and vertical wave path difference,the 3 D image of the target can be reconstructed.The reconstructed image is free from the limitation in InISAR that the image plane depends on the target's own motions and on its relative position with respect to the radar.Furthermore,a phase ambiguity resolution method is adopted to ensure the success of the 3 D imaging when phase ambiguity occurs.It can be noted that the proposed phase ambiguity resolution method only uses one antenna pair and does not require a priori knowledge,whereas the existing phase ambiguity methods may require two or more antenna pairs or a priori knowledge for phase unwarping.To evaluate the performance of the proposed method,the theoretical analyses on estimation accuracy are presented and the simulations in various scenarios are also carried out.
基金The name of the project that funded this article is 13th Five-Year Plan"equipment pre-research project,the number of this project is 30107030803。
文摘In this paper,we proposed a monopulse forward-looking high-resolution imaging algorithm based on adaptive iteration for missile-borne detector.Through iteration,the proposed algorithm automatically selects the echo signal of isolated strong-scattering points from the receiving echo signal data to accurately estimate the actual optimal monopulse response curve(MRC) of the same distance range,and we applied optimal MRC to realize the azimuth self-focusing in the process of imaging.We use real-time echo data to perform error correction for obtaining the optimal MRC,and the azimuth angulation accuracy may reach the optimum at a certain distance dimension.We experimentally demonstrate the validity,reliability and high performance of the proposed algorithm.The azimuth angulation accuracy may reach up to ten times of the detection beam-width.The simulation experiments have verified the feasibility of this strategy,with the average height measurement error being 7.8%.In the out-field unmanned aerial vehicle(UAV) tests,the height measurement error is less than 25 m,and the whole response time can satisfy the requirements of a missile-borne detector.
基金supported by the National Natural Science Foundation of China(11273017)
文摘A new recursive algorithm with the partial parallel structure based on the linearly constrained minimum variance (LCMV) criterion for adaptive monopulse systems is proposed. The weight vector associated with the original whole antenna array is decomposed into several adaptive weight sub-vectors firstly. An adaptive algorithm based on the conventional LCMV principle is then deduced to update the weight sub-vectors for sum and difference beam, respectively. The optimal weight vector can be obtained after convergence. The required computational complexity is evaluated for the proposed technique, which is on the order of O(N) and less than that of the conventional LCMV method. The flow chart scheme with the partial parallel structure of the proposed algorithm is introduced. This scheme is easy to be implemented on a distributed computer/digital signal processor (DSP) system to solve the problems of the heavy computational burden and vast data transmission of the large-scale adaptive monopulse array. Then, the monopulse ratio and convergence rate of the proposed algorithm are evaluated by numerical simulations. Compared with some recent adaptive monopulse estimation methods, a better performance on computational complexity and monopulse ratio can be achieved with the proposed adaptive method.
文摘The near field distribution and far field pattern of a monopulse ring focus shaped reflector antenna are studied. The four fold integral appearing in the formulation by using PO method is converted into a triple integral for the near field case and a double integral for the far field case by applying the Fourier series expansion. Good agreements have been achieved between theoretical and experimental results.
文摘Traditional monopulse radar cannot resolve two targets present in one range and Doppler cell by means of the monopulse ratio. A novel algorithm is proposed to estimate the directions of two steady targets with two pulses. The algorithm has a closedform expression and its variance is derived at high signal-to-noise ratios(SNRs). Furthermore, the pulse pair selection criterion and the estimation method with multiple pulses are given. Finally, some numerical results are shown to validate the proposed algorithm and the effect of slight target fluctuations is tested.
文摘A monopulse angle measurement method for polarization array radar is studied in this paper.The receiving signal model is established and then a monopulse angle measurement method based on virtual polarization matching is proposed.To analyze the estimation performance,the Cramer-Rao Lower Bound(CRLB)of angle estimation is derived.Both theoretical analysis and simulation show that:firstly,the proposed method is superior to the traditional angle measurement methods based on the single polarization.Secondly,the performance of the new method is unrelated to the echo polarization.Thirdly,angle estimation of this method is asymptotically optimal.The results show that this method has great potential to be used in polarization array radar.
基金This project is supported by the National Basic Research Program of China ("973" Program) under Grant No. 2014CB339900 and the National Natural Science Foundation of China under Grant No. 61372056.
文摘Monopulse slot antenna arrays based on substrate integrated waveguide (SIW) are proposed for the application of 60 GHz mono- pulse tracking systems in this paper. The sum-difference monopulse comparator can provide a high amplitude and phase balance over wide frequency band and no phase delay technique is required for the difference channel. Resonant slot antennas are adopted as the radiating elements since they can be integrated with the sum-difference monopulse comparator in a single layer with a compact size. Two monopulse arrays with 2× 4 and 4×4 slot elements are designed, fabricated, and measured. Measured results show that the proposed antenna arrays have wide bandwidth covering the unlicensed 60-GHz band. The peak sum beam gain is 13.85 dBi for the 2 ×4 element array and 16.24 dBi for the 4×4 element array. The peak difference beam gain is 11.20 dBi for the 2×4 element array and 12.11 dBi for the 4×4 element array and the maximum null depth can reach -40 dB.
基金supported by the Equipment Pre-research Project(GK202002A020068)。
文摘Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.
基金supported by the National Natural Science Foundation of China (Nos. 61101186 and 61401475)
文摘The classical detection step in a monopulse radar system is based on the sum beam only, the performance of which is not optimal when target is not at the beam center. Target detection aided by the difference beam can improve the performance at this case. However, the existing difference beam aided target detectors have the problem of performance deterioration at the beam center, which has limited their application in real systems. To solve this problem, two detectors are proposed in this paper. Assuming the monopulse ratio is known, a generalized likelihood ratio test (GLRT) detector is derived, which can be used when targeting information on target direction is available. A practical dual-stage detector is proposed for the case that the monopulse ratio is unknown. Simulation results show that performances of the proposed detectors are superior to that of the classical detector.
基金supported by the National Natural Science Foundation of China(6149069261401488)
文摘This paper presents an approach for mitigating the cross-eye jamming using a dual-polarization array. By transmitting a sum beam and a difference beam in two orthogonal polarimetric channels, a synthesized transmitted beam with spatially varying polarization is produced, such that the polarization of the transmitted radar wave varies in azimuth or elevation. Thus, the phases of the signals received on the two antennas of a cross-eye jammer become unequal, and an additional phase difference is introduced to disrupt the 180? phase shifting in the retrodirective loop of the jammer. By means of beam scanning in a small angular range,the optimal beam steering configuration can be found to maximize the phase error for the mitigation of cross-eye jamming. As a result, the jamming performance of the cross-eye jammer degrades largely. Theoretical analysis and simulation results indicate that the proposed method is valid and feasible.
基金supported by the Weapons and Equipment Research Foundation of China(304070102)
文摘The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase of the skin return. Although the median value of the total cross-eye gain distribution had been analyzed in previous studies, the extreme values providing useful indications of the upper and lower bounds of the total cross-eye gain have not been analyzed until now. In this paper, the cumulative distribution function and the extreme values of the total cross-eye gain of MRCJ are derived. The angular error induced in threat monopulse radar as a figure of merit is used to analyze the performance of MRCJ system. Simulation results demonstrate the variation of the angular error and discuss the proper value of jamming-to-signal ratio(JSR) making the MRCJ system more effective in consideration of the whole distribution of the total cross-eye gain.
文摘When the returns come from two or more unresolved targets (the signals are not resolved in the frequency or time domains) in a monopulse radar system, the direction-of-arrival (DOA)estimate indicated by the monopulse ratio is not the true information of the tracked target.Then the tracking systems is influenced. An approach has been proposed to detect whether the returns come from a single target or two unresolved targets. The above approach is extended from two to three unresolved targets. The simulation indicates that the detection probability under the three unresolved targets is not sure to exceed the detection probability under the two unresolved targets.
基金the Ministerial Level Advanced Research Foundation(404050301 .4)
文摘A new method is presented to improve guidance precision. This method is based on bistatic synthetic aperture radar. The illuminator works in side looking mode, providing the synthetic aperture and the receiver is disposed on the seeker which operates in the forward looking mode. The receiving antenna is composed of four sub-antennas and so four synthetic aperture radar (SAR) images are to be generated. Target is positioned in SAR images by image matching. The bearing and elevation of image element of target are measured by the principle of monopulse angular measurement. Theory of the proposed method is derived and simulation on bearing measurement is done. Simulation shows that the method is valid and if SNR of target's image is above 30 dB, the angular measuring difference is within the confines of 0.04 degree.
基金Project supported by the National Natural Science Foundation of China(No.61401475)
文摘Cross-eye jamming is an electronic attack technique that induces an angular error in the monopulse radar by artificially creating a false target and deceiving the radar into detecting and tracking it.Presently,there is no effective anti-jamming method to counteract cross-eye jamming.In our study,through detailed analysis of the jamming mechanism,a multi-target model for a cross-eye jamming scenario is established within a random finite set framework.A novel anti-jamming method based on multitarget tracking using probability hypothesis density filters is subsequently developed by combining the characteristic differences between target and jamming with the releasing process of jamming.The characteristic differences between target and jamming and the releasing process of jamming are used to optimize particle partitioning.Particle identity labels that represent the properties of target and jamming are introduced into the detection and tracking processes.The release of cross-eye jamming is detected by estimating the number of targets in the beam,and the distinction between true targets and false jamming is realized through correlation and transmission between labels and estimated states.Thus,accurate tracking of the true targets is achieved under severe jamming conditions.Simulation results showed that the proposed method achieves a minimum delay in detection of cross-eye jamming and an accurate estimation of the target state.
基金This work was supported by the National High Technology Research and Development Program of China(No.2004AA412050).
文摘A novel measurement method of temperature model for bioreactor has been proposed.Temperature is the key parameter in monitoring the bioreactor operation.However,the system input signal of bioreactor is delayed,and model parameters are uncertain,so the output of temperature is non-steady-state.Many dynamic measurements are not steady so that it cannot be described by variables constant in time.In this paper,we adopt the monopulse signal as input so that the output of the bioreactor system is steady.This method has a powerful ability to steady the output of the bioreactor.In view of the measurement results,it can be seen that the model dynamic measurement approaches the real process.The analytical expression of the monopulse response for the temperature model of the bioreactor is obtained.The novel measurement approach is simple and can be easily adopted by industry.