0 Introduction It is well known that there axe a great number of interesting results in Fourier analysis established by assuming monotonicity of coefficients, and many of them have been generalized by loosing the cond...0 Introduction It is well known that there axe a great number of interesting results in Fourier analysis established by assuming monotonicity of coefficients, and many of them have been generalized by loosing the condition to quasi-monotonicity, O-regularly varying quasi-monotonicity, etc..展开更多
By using the coupling method and the localization technique, we establish non-uniform gradient estimates for Markov semigroups of diffusions or stochastic differential equations driven by pure jump Le′vy noises, wher...By using the coupling method and the localization technique, we establish non-uniform gradient estimates for Markov semigroups of diffusions or stochastic differential equations driven by pure jump Le′vy noises, where the coefficients only satisfy local monotonicity conditions.展开更多
In this paper we consider one dimensional mean-field backward stochastic differential equations(BSDEs)under weak assumptions on the coefficient.Unlike[3],the generator of our mean-field BSDEs depends not only on the s...In this paper we consider one dimensional mean-field backward stochastic differential equations(BSDEs)under weak assumptions on the coefficient.Unlike[3],the generator of our mean-field BSDEs depends not only on the solution(Y,Z)but also on the law PY of Y.The first part of the paper is devoted to the existence and uniqueness of solutions in Lp,1<p≤2,where the monotonicity conditions are satisfied.Next,we show that if the generator/is uniformly continuous in(μ,y,z),uniformly with respect to(t,ω) and if the terminal valueξbelongs to Lp(Ω,F,P)with 1<p≤2,the mean-field BSDE has a unique Lp solution.展开更多
In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were sup...In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were supposed to satisfy some additional monotonic condition. Moreover, with the assumption that the singular values of operator have power form, the improved convergence rates of the regularized solution were worked out.展开更多
In this paper,the authors establish the existence and uniqueness theorem of L^(p)(1<p≤2)solutions for multidimensional backward doubly stochastic differential equations(BDSDEs for short)under the p-order globally(...In this paper,the authors establish the existence and uniqueness theorem of L^(p)(1<p≤2)solutions for multidimensional backward doubly stochastic differential equations(BDSDEs for short)under the p-order globally(locally)weak monotonicity conditions.Comparison theorem of L^(p) solutions for one-dimensional BDSDEs is also proved.These conclusions unify and generalize some known results.展开更多
A graphic sequence π =(d1, d2,..., dn) is said to be forcibly k-edge-connected if every realization of π is k-edge-connected. In this paper, we obtain a new sufficient degree condition for π to be forcibly k-edgeco...A graphic sequence π =(d1, d2,..., dn) is said to be forcibly k-edge-connected if every realization of π is k-edge-connected. In this paper, we obtain a new sufficient degree condition for π to be forcibly k-edgeconnected. We also show that this new sufficient degree condition implies a strongest monotone degree condition for π to be forcibly 2-edge-connected and a conjecture about a strongest monotone degree condition for π to be forcibly 3-edge-connected due to Bauer et al.(Networks, 54(2)(2009) 95-98), and also implies a strongest monotone degree condition for π to be forcibly 4-edge-connected.展开更多
This paper is concerned with coupled linear forward-backward stochastic differential equations(FBSDEs,for short).When the homogeneous coefficients are deterministic(the non-homogeneous coefficients can be random),we o...This paper is concerned with coupled linear forward-backward stochastic differential equations(FBSDEs,for short).When the homogeneous coefficients are deterministic(the non-homogeneous coefficients can be random),we obtain an L^(P)-result(p>2),including the existence and uniqueness of the p-th power integrable solution,a p-th power estimate,and a related continuous dependence property of the solution on the coefficients,for coupled linear FBSDEs in the monotonicity framework over large time intervals.In order to get rid of the stubborn constraint commonly existing in the literature,i.e.,the Lipschitz constant of σ with respect to z is very small,we introduce a linear transformation to overcome the difficulty on small intervals,and then"splice"the L^(P)-results obtained on many small intervals to yield the desired one on a large interval.展开更多
基金Supported in part by Natural Science Foundation of China(No.10471130)
文摘0 Introduction It is well known that there axe a great number of interesting results in Fourier analysis established by assuming monotonicity of coefficients, and many of them have been generalized by loosing the condition to quasi-monotonicity, O-regularly varying quasi-monotonicity, etc..
基金Supported by the National Natural Science Foundation of China(Grant No.11831014)the Program for Probability and Statistics:Theory and Application(Grant No.IRTL1704)the Program for Innovative Research Team in Science and Technology in Fujian Province University(IRTSTFJ)。
文摘By using the coupling method and the localization technique, we establish non-uniform gradient estimates for Markov semigroups of diffusions or stochastic differential equations driven by pure jump Le′vy noises, where the coefficients only satisfy local monotonicity conditions.
基金supported in part by the NSFC(11222110,11871037)Shandong Province(JQ201202)+1 种基金NSFC-RS(11661130148,NA150344)111 Project(B12023)。
文摘In this paper we consider one dimensional mean-field backward stochastic differential equations(BSDEs)under weak assumptions on the coefficient.Unlike[3],the generator of our mean-field BSDEs depends not only on the solution(Y,Z)but also on the law PY of Y.The first part of the paper is devoted to the existence and uniqueness of solutions in Lp,1<p≤2,where the monotonicity conditions are satisfied.Next,we show that if the generator/is uniformly continuous in(μ,y,z),uniformly with respect to(t,ω) and if the terminal valueξbelongs to Lp(Ω,F,P)with 1<p≤2,the mean-field BSDE has a unique Lp solution.
文摘In this paper, the Tikhonov regularization method was used to solve the nondegenerate compact hnear operator equation, which is a well-known ill-posed problem. Apart from the usual error level, the noise data were supposed to satisfy some additional monotonic condition. Moreover, with the assumption that the singular values of operator have power form, the improved convergence rates of the regularized solution were worked out.
基金supported by the National Natural Science Foundation of China(No.11601509).
文摘In this paper,the authors establish the existence and uniqueness theorem of L^(p)(1<p≤2)solutions for multidimensional backward doubly stochastic differential equations(BDSDEs for short)under the p-order globally(locally)weak monotonicity conditions.Comparison theorem of L^(p) solutions for one-dimensional BDSDEs is also proved.These conclusions unify and generalize some known results.
基金supported by the Hainan Provincial Natural Science Foundation of China(No.2019RC085)the National Natural Science Foundation of China(No.11961019)。
文摘A graphic sequence π =(d1, d2,..., dn) is said to be forcibly k-edge-connected if every realization of π is k-edge-connected. In this paper, we obtain a new sufficient degree condition for π to be forcibly k-edgeconnected. We also show that this new sufficient degree condition implies a strongest monotone degree condition for π to be forcibly 2-edge-connected and a conjecture about a strongest monotone degree condition for π to be forcibly 3-edge-connected due to Bauer et al.(Networks, 54(2)(2009) 95-98), and also implies a strongest monotone degree condition for π to be forcibly 4-edge-connected.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11871310,12271304 and 11971262)the Natural Science Foundation of Shandong Province(Grant No.ZR2020MA014)。
文摘This paper is concerned with coupled linear forward-backward stochastic differential equations(FBSDEs,for short).When the homogeneous coefficients are deterministic(the non-homogeneous coefficients can be random),we obtain an L^(P)-result(p>2),including the existence and uniqueness of the p-th power integrable solution,a p-th power estimate,and a related continuous dependence property of the solution on the coefficients,for coupled linear FBSDEs in the monotonicity framework over large time intervals.In order to get rid of the stubborn constraint commonly existing in the literature,i.e.,the Lipschitz constant of σ with respect to z is very small,we introduce a linear transformation to overcome the difficulty on small intervals,and then"splice"the L^(P)-results obtained on many small intervals to yield the desired one on a large interval.