Disturbances that create gaps can shape the structure and function of forests. However, such disturbance regimes in Asian tropical montane rainforests remain largely unquantified. Least studied are typhoon disturbance...Disturbances that create gaps can shape the structure and function of forests. However, such disturbance regimes in Asian tropical montane rainforests remain largely unquantified. Least studied are typhoon disturbances that are attributable to climate change. We investigated gap characteristics in terms of size, age, and gap-maker to quantify the gap disturbance regimes in an intact old-growth tropical montane rainforest on Hainan Island, China. The intensity of typhoons has increased since 1949, and typhoon winds blow mostly (45.5%) from the northeast corner of Hainan Island, resulting in a higher frequency of gaps in the northeast. A total of 221 gap-makers (trees that fell to create canopy gaps) and 53 gaps were observed in a 3.16 ha old-growth rainforest. Most canopy gaps (85%) were < 200 m(2). The average size of canopy gaps was smaller in the rainforest than in other tropical forests, while the average size of expanded gaps was similar to those in other tropical forests. The maximum age of gaps was 23.5 years indicating that gaps had more rapid turnover than other parts of tropical forests. The frequency distribution of gap-makers followed a lognormal distribution with a distinctive peak at three gap-makers, which was different from the inverse J-shaped curve typical of other tropical forests. Gaps were recorded mainly on slopes between 20A degrees and 35A degrees and wood density of gap-makers was between 0.6 and 0.7 g cm(-3). Our results suggest that small-scale disturbance was the dominant agent of gap formation in this old-growth rainforest that is subject to increasing typhoon disturbances.展开更多
Spatial and temporal patterns of seed bank dynamics in relation to gaps in an old growth tropical montane rainforest of Hainan Island, South China, were studied over two consecutive years. From June 2001 to June 2003,...Spatial and temporal patterns of seed bank dynamics in relation to gaps in an old growth tropical montane rainforest of Hainan Island, South China, were studied over two consecutive years. From June 2001 to June 2003, soil seed bank sampling blocks were taken near each of the four sides of each seed trap and immediately put into a nursery for observation of seedling emergence dynamics in four seasons (each experiment in each season). The abundances of seedlings that emerged from seed banks showed the trend of vine functional group (VFG) 〉 shrub functional group (SFG) 〉 tree functional group (TFG) 〉 herb functional group (HFG), but the trend in species richness of seedlings that emerged from the soil seed banks was TFG 〉 VFG 〉 SFG 〉 HFG. The abundances of seedlings that emerged from seed banks in the three gap zones showed no significant differences, but significant differences did exist for the species richness. The time of sampling or seasons of experiments had significant influences on both the species richness and seedling abundances. The seedling emergence processes of each experiment all revealed the unimodal patterns. Few emergences occurred 1 year after each experiment. Compared with those under closed canopies, the recruitment rates from seed to seedlings and from seedlings to saplings In gaps were higher, but the mortality rates from saplings to big trees were also higher in the gaps.展开更多
Introduction:Quantifying forest biomass requires the application of allometric equations which is a fundamental step.Generalized allometric equations have been applied to quantify aboveground biomass(AGB)of forests.Bu...Introduction:Quantifying forest biomass requires the application of allometric equations which is a fundamental step.Generalized allometric equations have been applied to quantify aboveground biomass(AGB)of forests.But,adopting generalized allometric equations to quantify AGB of different forests creates uncertainty.Therefore,developing species-and sitespecific allometric equations is essential to accurately quantify the biomass.The study was aimed to develop species-specific allometric equations for Diospyros abyssinica(Hiern)F.White in Yayu Coffee Forest Biosphere Reserve using the Semi-destructive method.The vegetation types of Yayu Coffee Forest Biosphere Reserve is categorized to Moist Evergreen Montane Rainforest of Ethiopia.Results and discussion:Evaluating statistical relationships of AGB against predictor variables,eight allometric equations were formulated.AGB was regressed against trunk diameter(D),total height(H),and wood density(ρ)individually and in combination.Selection of allometric equations was employed using model performance statistics.Equations with a higher coefficient of determination(adjusted R^(2)),lower residual standard error,and Akaike information criterion(AIC)values were found best-fitted.Relationships of AGB and independent variables were found statistically significant(p<0.000).Overall,formulating species-and site-specific allometric equations is significant for accurate estimation of forest biomass and carbon stock budget.展开更多
基金supported by the Ministry of Science and Technology(2012BAD22B01 and 2006BAD03A04)special funds of Research Institute of Tropical Forestry,Chinese Academy of Forestry(RITFYWZX2012-02CAFYBB2014QA010)
文摘Disturbances that create gaps can shape the structure and function of forests. However, such disturbance regimes in Asian tropical montane rainforests remain largely unquantified. Least studied are typhoon disturbances that are attributable to climate change. We investigated gap characteristics in terms of size, age, and gap-maker to quantify the gap disturbance regimes in an intact old-growth tropical montane rainforest on Hainan Island, China. The intensity of typhoons has increased since 1949, and typhoon winds blow mostly (45.5%) from the northeast corner of Hainan Island, resulting in a higher frequency of gaps in the northeast. A total of 221 gap-makers (trees that fell to create canopy gaps) and 53 gaps were observed in a 3.16 ha old-growth rainforest. Most canopy gaps (85%) were < 200 m(2). The average size of canopy gaps was smaller in the rainforest than in other tropical forests, while the average size of expanded gaps was similar to those in other tropical forests. The maximum age of gaps was 23.5 years indicating that gaps had more rapid turnover than other parts of tropical forests. The frequency distribution of gap-makers followed a lognormal distribution with a distinctive peak at three gap-makers, which was different from the inverse J-shaped curve typical of other tropical forests. Gaps were recorded mainly on slopes between 20A degrees and 35A degrees and wood density of gap-makers was between 0.6 and 0.7 g cm(-3). Our results suggest that small-scale disturbance was the dominant agent of gap formation in this old-growth rainforest that is subject to increasing typhoon disturbances.
基金the National Natural Science Foundation of China (30430570,30070602, and 30270244).
文摘Spatial and temporal patterns of seed bank dynamics in relation to gaps in an old growth tropical montane rainforest of Hainan Island, South China, were studied over two consecutive years. From June 2001 to June 2003, soil seed bank sampling blocks were taken near each of the four sides of each seed trap and immediately put into a nursery for observation of seedling emergence dynamics in four seasons (each experiment in each season). The abundances of seedlings that emerged from seed banks showed the trend of vine functional group (VFG) 〉 shrub functional group (SFG) 〉 tree functional group (TFG) 〉 herb functional group (HFG), but the trend in species richness of seedlings that emerged from the soil seed banks was TFG 〉 VFG 〉 SFG 〉 HFG. The abundances of seedlings that emerged from seed banks in the three gap zones showed no significant differences, but significant differences did exist for the species richness. The time of sampling or seasons of experiments had significant influences on both the species richness and seedling abundances. The seedling emergence processes of each experiment all revealed the unimodal patterns. Few emergences occurred 1 year after each experiment. Compared with those under closed canopies, the recruitment rates from seed to seedlings and from seedlings to saplings In gaps were higher, but the mortality rates from saplings to big trees were also higher in the gaps.
文摘Introduction:Quantifying forest biomass requires the application of allometric equations which is a fundamental step.Generalized allometric equations have been applied to quantify aboveground biomass(AGB)of forests.But,adopting generalized allometric equations to quantify AGB of different forests creates uncertainty.Therefore,developing species-and sitespecific allometric equations is essential to accurately quantify the biomass.The study was aimed to develop species-specific allometric equations for Diospyros abyssinica(Hiern)F.White in Yayu Coffee Forest Biosphere Reserve using the Semi-destructive method.The vegetation types of Yayu Coffee Forest Biosphere Reserve is categorized to Moist Evergreen Montane Rainforest of Ethiopia.Results and discussion:Evaluating statistical relationships of AGB against predictor variables,eight allometric equations were formulated.AGB was regressed against trunk diameter(D),total height(H),and wood density(ρ)individually and in combination.Selection of allometric equations was employed using model performance statistics.Equations with a higher coefficient of determination(adjusted R^(2)),lower residual standard error,and Akaike information criterion(AIC)values were found best-fitted.Relationships of AGB and independent variables were found statistically significant(p<0.000).Overall,formulating species-and site-specific allometric equations is significant for accurate estimation of forest biomass and carbon stock budget.