To improve the reliability and accuracy of visual tracker,a robust visual tracking algorithm based on multi-cues fusion under Bayesian framework is proposed.The weighed color and texture cues of the object are applied...To improve the reliability and accuracy of visual tracker,a robust visual tracking algorithm based on multi-cues fusion under Bayesian framework is proposed.The weighed color and texture cues of the object are applied to describe the moving object.An adjustable observation model is incorporated into particle filtering,which utilizes the properties of particle filter for coping with non-linear,non-Gaussian assumption and the ability to predict the position of the moving object in a cluttered environment and two complementary attributes are employed to estimate the matching similarity dynamically in term of the likelihood ratio factors;furthermore tunes the weight values according to the confidence map of the color and texture feature on-line adaptively to reconfigure the optimal observation likelihood model,which ensured attaining the maximum likelihood ratio in the tracking scenario even if in the situations where the object is occluded or illumination,pose and scale are time-variant.The experimental result shows that the algorithm can track a moving object accurately while the reliability of tracking in a challenging case is validated in the experimentation.展开更多
The income approach of asset valuation estimates the asset value according to the asset-discounted future earnings or the capitalizing process. As a result, a reasonable prediction of asset-expected future returns has...The income approach of asset valuation estimates the asset value according to the asset-discounted future earnings or the capitalizing process. As a result, a reasonable prediction of asset-expected future returns has become one of the core contents of the income approach. The forecast on expected future earnings is generally based on many uncertain factors, such as strict conditions of assumption and the complexity of environment. However, the current valuation practice in this aspect varies greatly and sometimes depends on personally experienced judgment of appraisers. Therefore, the obtained valuation results tend to be simplified and absolutized. This paper takes a listed company in China as an example to explore the way of inserting an uncertainty analysis into the prediction of the income approach, and then to obtain a series of valuation results within a certain probability fluctuation range. Finally, it puts forward some suggestions about the Monte Carlo simulation (MCS).展开更多
Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this...Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this study, a modified continuous lumping kinetic approach is applied to model the hydro-cracking of vacuum gas oil. The model is modified to take into consideration the reactor temperature on the reaction yield distribution. The model is calibrated by maximizing the likelihood function between the modeled and measured data at four different reactor temperatures. Bayesian approach parameter estimation is also applied to obtain the confidence interval of model parameters by considering the uncertainty associated with the measured errors and the model structural errors. Then Monte Carlo simulation is applied to the posterior range of the model parameters to obtain the 95% confidence interval of the model outputs for each individual fraction of the hydrocracking products. A good agreement is observed between the output of the calibrated model and the measured data points. The Bayesian approach based on the Markov Chain Monte Carlo simulation is shown to be efficient to quantify the uncertainty associated with the parameter values of the continuous lumping model.展开更多
The Bayesian inversion method is a stochastic approach based on the Bayesian theory.With the development of sampling algorithms and computer technologies,the Bayesian inversion method has been widely used in geophysic...The Bayesian inversion method is a stochastic approach based on the Bayesian theory.With the development of sampling algorithms and computer technologies,the Bayesian inversion method has been widely used in geophysical inversion problems.In this study,we conduct inversion experiments using crosshole seismic travel-time data to examine the characteristics and performance of the stochastic Bayesian inversion based on the Markov chain Monte Carlo sampling scheme and the traditional deterministic inversion with Tikhonov regularization.Velocity structures with two different spatial variations are considered,one with a chessboard pattern and the other with an interface mimicking the Mohorovicicdiscontinuity(Moho).Inversions are carried out with different scenarios of model discretization and source–receiver configurations.Results show that the Bayesian method yields more robust single-model estimations than the deterministic method,with smaller model errors.In addition,the Bayesian method provides the posterior probabilistic distribution function of the model space,which can help us evaluate the quality of the inversion result.展开更多
文摘To improve the reliability and accuracy of visual tracker,a robust visual tracking algorithm based on multi-cues fusion under Bayesian framework is proposed.The weighed color and texture cues of the object are applied to describe the moving object.An adjustable observation model is incorporated into particle filtering,which utilizes the properties of particle filter for coping with non-linear,non-Gaussian assumption and the ability to predict the position of the moving object in a cluttered environment and two complementary attributes are employed to estimate the matching similarity dynamically in term of the likelihood ratio factors;furthermore tunes the weight values according to the confidence map of the color and texture feature on-line adaptively to reconfigure the optimal observation likelihood model,which ensured attaining the maximum likelihood ratio in the tracking scenario even if in the situations where the object is occluded or illumination,pose and scale are time-variant.The experimental result shows that the algorithm can track a moving object accurately while the reliability of tracking in a challenging case is validated in the experimentation.
文摘The income approach of asset valuation estimates the asset value according to the asset-discounted future earnings or the capitalizing process. As a result, a reasonable prediction of asset-expected future returns has become one of the core contents of the income approach. The forecast on expected future earnings is generally based on many uncertain factors, such as strict conditions of assumption and the complexity of environment. However, the current valuation practice in this aspect varies greatly and sometimes depends on personally experienced judgment of appraisers. Therefore, the obtained valuation results tend to be simplified and absolutized. This paper takes a listed company in China as an example to explore the way of inserting an uncertainty analysis into the prediction of the income approach, and then to obtain a series of valuation results within a certain probability fluctuation range. Finally, it puts forward some suggestions about the Monte Carlo simulation (MCS).
文摘Hydrocracking is a catalytic reaction process in the petroleum refineries for converting the higher boiling temperature residue of crude oil into a lighter fraction of hydrocarbons such as gasoline and diesel. In this study, a modified continuous lumping kinetic approach is applied to model the hydro-cracking of vacuum gas oil. The model is modified to take into consideration the reactor temperature on the reaction yield distribution. The model is calibrated by maximizing the likelihood function between the modeled and measured data at four different reactor temperatures. Bayesian approach parameter estimation is also applied to obtain the confidence interval of model parameters by considering the uncertainty associated with the measured errors and the model structural errors. Then Monte Carlo simulation is applied to the posterior range of the model parameters to obtain the 95% confidence interval of the model outputs for each individual fraction of the hydrocracking products. A good agreement is observed between the output of the calibrated model and the measured data points. The Bayesian approach based on the Markov Chain Monte Carlo simulation is shown to be efficient to quantify the uncertainty associated with the parameter values of the continuous lumping model.
基金supported by the National Natural Science Foundation of China (grant nos. 41930103 and 41674052)
文摘The Bayesian inversion method is a stochastic approach based on the Bayesian theory.With the development of sampling algorithms and computer technologies,the Bayesian inversion method has been widely used in geophysical inversion problems.In this study,we conduct inversion experiments using crosshole seismic travel-time data to examine the characteristics and performance of the stochastic Bayesian inversion based on the Markov chain Monte Carlo sampling scheme and the traditional deterministic inversion with Tikhonov regularization.Velocity structures with two different spatial variations are considered,one with a chessboard pattern and the other with an interface mimicking the Mohorovicicdiscontinuity(Moho).Inversions are carried out with different scenarios of model discretization and source–receiver configurations.Results show that the Bayesian method yields more robust single-model estimations than the deterministic method,with smaller model errors.In addition,the Bayesian method provides the posterior probabilistic distribution function of the model space,which can help us evaluate the quality of the inversion result.