A synchrotron-based proton therapy(PT)facility that conforms with the requirement of future development trend in compact PT can be operated without an energy selection system.This article demonstrates a novel radiatio...A synchrotron-based proton therapy(PT)facility that conforms with the requirement of future development trend in compact PT can be operated without an energy selection system.This article demonstrates a novel radiation shielding design for this purpose.Various FLUKAbased Monte Carlo simulations have been performed to validate its feasibility.In this design,two different shielding scenarios(3-m-thick concrete and 2-m-thick iron–concrete)are proved able to reduce the public annual dose to the limit of 0.1 mSv/year.The calculation result shows that the non-primary radiation from a PT system without an inner shielding wall complies with the IEC 60601-2-64 international standard,making a single room a reality.Moreover,the H/D value of this design decreases from 2.14 to 0.32 mSv/Gy when the distance ranges from 50 to 150 cm from the isocenter,which is consistent with the previous result from another study.By establishing a typical time schedule and procedures in a treatment day for a single room in the simulation,a non-urgent machine maintenance time of 10 min after treatment is recommended,and the residual radiation level in most areas can be reduced to 2.5 lSv/h.The annual dose for radiation therapists coming from the residual radiation is 1 mSv,which is 20%of the target design.In general,this shielding design ensures a low cost and compact facility compared with the cyclotron-based PT system.展开更多
Shielding effects of different materials under 1 MeV electron and 20 MeV proton beams were simulated with Geant4 code. It was found that shielding effects of polyethylene and graphite fibers are much better than alumi...Shielding effects of different materials under 1 MeV electron and 20 MeV proton beams were simulated with Geant4 code. It was found that shielding effects of polyethylene and graphite fibers are much better than aluminum. Energy depositions in the phantom shielded by the materials are calculated, with the least energy deposition by graphite fiber shielding. The results show that graphite fibers are good radiation shielding material in space programs.展开更多
The total macroscopic removal cross sections,deposited energies and the absorbed doses of three new shielding composites loaded with specific boron-rich slag,boron concentrate ore and boron mud of China for 252Cf neut...The total macroscopic removal cross sections,deposited energies and the absorbed doses of three new shielding composites loaded with specific boron-rich slag,boron concentrate ore and boron mud of China for 252Cf neutron source were investigated by experimental and Monte Carlo calculation.The results were evaluated by boron mole numbers per unit volume in composites.The half value layers of the composites were calculated and compared with that of Portland concrete,indicating that ascending boron mole numbers per unit volume in the composites can enhance the shielding properties of the composites for 252Cf neutron source.展开更多
NCRP 151 provides very detailed examples demonstrating the necessary concerns for shielding a conventional radiotherapy vault with a maze where the useful beam is parallel to the maze. However, it provides little guid...NCRP 151 provides very detailed examples demonstrating the necessary concerns for shielding a conventional radiotherapy vault with a maze where the useful beam is parallel to the maze. However, it provides little guidance on how to properly shield a vault with the maze-wall acting as part of a compound primary barrier. We have modeled a new radiotherapy vault with this configuration and assessed the additional photon shielding burden at the door with MCNP5. MCNP simulations demonstrated an increase in overall photon shielding burden at the door relative to calculations that only consider photon workloads presented in NCRP 151. Two additional components of scattered radiation are considered and methods for calculation are presented.展开更多
基金partially supported by the China Postdoctoral Science Foundation(No.2019M650611)
文摘A synchrotron-based proton therapy(PT)facility that conforms with the requirement of future development trend in compact PT can be operated without an energy selection system.This article demonstrates a novel radiation shielding design for this purpose.Various FLUKAbased Monte Carlo simulations have been performed to validate its feasibility.In this design,two different shielding scenarios(3-m-thick concrete and 2-m-thick iron–concrete)are proved able to reduce the public annual dose to the limit of 0.1 mSv/year.The calculation result shows that the non-primary radiation from a PT system without an inner shielding wall complies with the IEC 60601-2-64 international standard,making a single room a reality.Moreover,the H/D value of this design decreases from 2.14 to 0.32 mSv/Gy when the distance ranges from 50 to 150 cm from the isocenter,which is consistent with the previous result from another study.By establishing a typical time schedule and procedures in a treatment day for a single room in the simulation,a non-urgent machine maintenance time of 10 min after treatment is recommended,and the residual radiation level in most areas can be reduced to 2.5 lSv/h.The annual dose for radiation therapists coming from the residual radiation is 1 mSv,which is 20%of the target design.In general,this shielding design ensures a low cost and compact facility compared with the cyclotron-based PT system.
文摘Shielding effects of different materials under 1 MeV electron and 20 MeV proton beams were simulated with Geant4 code. It was found that shielding effects of polyethylene and graphite fibers are much better than aluminum. Energy depositions in the phantom shielded by the materials are calculated, with the least energy deposition by graphite fiber shielding. The results show that graphite fibers are good radiation shielding material in space programs.
基金Supported by National Natural Science Foundation of China(Grant Number:50774022)
文摘The total macroscopic removal cross sections,deposited energies and the absorbed doses of three new shielding composites loaded with specific boron-rich slag,boron concentrate ore and boron mud of China for 252Cf neutron source were investigated by experimental and Monte Carlo calculation.The results were evaluated by boron mole numbers per unit volume in composites.The half value layers of the composites were calculated and compared with that of Portland concrete,indicating that ascending boron mole numbers per unit volume in the composites can enhance the shielding properties of the composites for 252Cf neutron source.
文摘NCRP 151 provides very detailed examples demonstrating the necessary concerns for shielding a conventional radiotherapy vault with a maze where the useful beam is parallel to the maze. However, it provides little guidance on how to properly shield a vault with the maze-wall acting as part of a compound primary barrier. We have modeled a new radiotherapy vault with this configuration and assessed the additional photon shielding burden at the door with MCNP5. MCNP simulations demonstrated an increase in overall photon shielding burden at the door relative to calculations that only consider photon workloads presented in NCRP 151. Two additional components of scattered radiation are considered and methods for calculation are presented.