The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the co...The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results.展开更多
Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random error...Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.展开更多
A stratified sampling Monte Carlo method to analyze the reliability of structural systems is presented. Introducing a small exploratory simulation, this method overcomes the difficulties for getting the systematic sam...A stratified sampling Monte Carlo method to analyze the reliability of structural systems is presented. Introducing a small exploratory simulation, this method overcomes the difficulties for getting the systematic sampling probability of all the strata. Several useful and efficient stratification methods are given and the strategies of stratification and simulation are studied. A general conclusion has been presented corresponding to actual engineering structures. The strict theoretical proof has been given,and it is especially effective to solve probabilistic integration. Statistic error of evaluating failure probability is reduced obviously. Especially in highly non-linear and nonreonvex problems, it is more accurate than other methods. Compared with other variance reduction techniques, this method can obtain a more obvious variance reduction and an increased sampling efficiency. Moreover, without strict limiting condition, it is convenient to use. This method is especially suitable to solve the reliability problem of structural systems with multiple failure modes and highly non-linear safety margin equations.展开更多
Usually, there are several methods, e.g. experiment, interpolation experiment-based, analytic function, and Monte-Carlo simulation, to calculate the response functions in LaBr3(Ce) detectors. In logging applications...Usually, there are several methods, e.g. experiment, interpolation experiment-based, analytic function, and Monte-Carlo simulation, to calculate the response functions in LaBr3(Ce) detectors. In logging applications, the experiment-based methods cannot be adopted because of their limitations. Analytic function has the advantage of fast calculating speed, but it is very difficult to take into account many effects that occur in practical applications. On the contrary, Monte-Carlo simulation can deal with physical and geometric configurations very tactfully. It has a distinct advantage for calculating the functions with complex configurations in borehole. A new application of LaBr3(Ce) detector is in natural gamma-rays borehole spectrometer for uranium well logging. Calculation of response functions must consider a series of physical and geometric factors under complex logging conditions, including earth formations and its relevant parameters, different energies, material and thickness of the casings, the fluid between the two tubes, and relative position of the LaBr3(Ce) crystal to steel ingot at the front of logging tube. The present work establishes Monte-Carlo simulation models for the above-mentioned situations, and then performs calculations for main gamma-rays from natural radio-elements series. The response functions can offer experimental directions for the design of borehole detection system, and provide technique basis and basic data for spectral analysis of natural gamma-rays, and for sonrceless calibration in uranium quantitative interpretation.展开更多
This paper applies a density functional theory (DFT) and grand canonical Monte Carlo simulations (GCMC) to investigate the physisorptions of molecular hydrogen in single-walled BC3 nanotubes and carbon nanotubes. ...This paper applies a density functional theory (DFT) and grand canonical Monte Carlo simulations (GCMC) to investigate the physisorptions of molecular hydrogen in single-walled BC3 nanotubes and carbon nanotubes. The DFT calculations may provide useful information about the nature of hydrogen adsorption and physisorption energies in selected adsorption sites of these two nanotubes. Furthermore, the GCMC simulations can reproduce their storage capacity by calculating the weight percentage of the adsorbed molecular hydrogen under different conditions. The present results have shown that with both computational methods, the hydrogen storage capacity of BC3 nanotubes is superior to that of carbon nanotubes. The reasons causing different behaviour of hydrogen storage in these two nanotubes are explained by using their contour plots of electron density and charge-density difference.展开更多
In this paper a method has been proposed for the calculation of cohesive work and thus sur-face tension of liquids by the Monte Carlo computer simulation method with the use of Kihara po-tential. The surface tension v...In this paper a method has been proposed for the calculation of cohesive work and thus sur-face tension of liquids by the Monte Carlo computer simulation method with the use of Kihara po-tential. The surface tension values calculated for liquid argon, oxygen and nitrogen are in fairagreement with the experimental data.展开更多
Haze concentration prediction,especially PM2.5,has always been a significant focus of air quality research,which is necessary to start a deep study.Aimed at predicting the monthly average concentration of PM2.5 in Bei...Haze concentration prediction,especially PM2.5,has always been a significant focus of air quality research,which is necessary to start a deep study.Aimed at predicting the monthly average concentration of PM2.5 in Beijing,a novel method based on Monte Carlo model is conducted.In order to fully exploit the value of PM2.5 data,we take logarithmic processing of the original PM2.5 data and propose two different scales of the daily concentration and the daily chain development speed of PM2.5 respectively.The results show that these data are both approximately normal distribution.On the basis of the results,a Monte Carlo method can be applied to establish a probability model of normal distribution based on two different variables and random sampling numbers can also be generated by computer.Through a large number of simulation experiments,the average monthly concentration of PM2.5 in Beijing and the general trend of PM2.5 can be obtained.By comparing the errors between the real data and the predicted data,the Monte Carlo method is reliable in predicting the PM2.5 monthly mean concentration in the area.This study also provides a feasible method that may be applied in other studies to predict other pollutants with large scale time series data.展开更多
A random simulation method was used for treatment of systems of Volterra integral equations of the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature formula. Secondly, this ...A random simulation method was used for treatment of systems of Volterra integral equations of the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature formula. Secondly, this algebra system was solved by using relaxed Monte Carlo method with importance sampling and numerical approximation solutions of the integral equations system were achieved. It is theoretically proved that the validity of relaxed Monte Carlo method is based on importance sampling to solve the integral equations system. Finally, some numerical examples from literatures are given to show the efficiency of the method.展开更多
文摘The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results.
基金Supported by National Natural Science Foundation of China(Grant No.51375013)Anhui Provincial Natural Science Foundation of China(Grant No.1208085ME64)
文摘Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.
文摘A stratified sampling Monte Carlo method to analyze the reliability of structural systems is presented. Introducing a small exploratory simulation, this method overcomes the difficulties for getting the systematic sampling probability of all the strata. Several useful and efficient stratification methods are given and the strategies of stratification and simulation are studied. A general conclusion has been presented corresponding to actual engineering structures. The strict theoretical proof has been given,and it is especially effective to solve probabilistic integration. Statistic error of evaluating failure probability is reduced obviously. Especially in highly non-linear and nonreonvex problems, it is more accurate than other methods. Compared with other variance reduction techniques, this method can obtain a more obvious variance reduction and an increased sampling efficiency. Moreover, without strict limiting condition, it is convenient to use. This method is especially suitable to solve the reliability problem of structural systems with multiple failure modes and highly non-linear safety margin equations.
基金supported by Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense(No. 2011RGET04)East China Institute of Technology, and National Natural Science Foundation of China (No. 41074078)
文摘Usually, there are several methods, e.g. experiment, interpolation experiment-based, analytic function, and Monte-Carlo simulation, to calculate the response functions in LaBr3(Ce) detectors. In logging applications, the experiment-based methods cannot be adopted because of their limitations. Analytic function has the advantage of fast calculating speed, but it is very difficult to take into account many effects that occur in practical applications. On the contrary, Monte-Carlo simulation can deal with physical and geometric configurations very tactfully. It has a distinct advantage for calculating the functions with complex configurations in borehole. A new application of LaBr3(Ce) detector is in natural gamma-rays borehole spectrometer for uranium well logging. Calculation of response functions must consider a series of physical and geometric factors under complex logging conditions, including earth formations and its relevant parameters, different energies, material and thickness of the casings, the fluid between the two tubes, and relative position of the LaBr3(Ce) crystal to steel ingot at the front of logging tube. The present work establishes Monte-Carlo simulation models for the above-mentioned situations, and then performs calculations for main gamma-rays from natural radio-elements series. The response functions can offer experimental directions for the design of borehole detection system, and provide technique basis and basic data for spectral analysis of natural gamma-rays, and for sonrceless calibration in uranium quantitative interpretation.
基金Project supported by Henan University of Technology Foundation (Grant No. 2009BS025)China Academy of Engineering Physics Foundation (Grant No. 2007B08008)
文摘This paper applies a density functional theory (DFT) and grand canonical Monte Carlo simulations (GCMC) to investigate the physisorptions of molecular hydrogen in single-walled BC3 nanotubes and carbon nanotubes. The DFT calculations may provide useful information about the nature of hydrogen adsorption and physisorption energies in selected adsorption sites of these two nanotubes. Furthermore, the GCMC simulations can reproduce their storage capacity by calculating the weight percentage of the adsorbed molecular hydrogen under different conditions. The present results have shown that with both computational methods, the hydrogen storage capacity of BC3 nanotubes is superior to that of carbon nanotubes. The reasons causing different behaviour of hydrogen storage in these two nanotubes are explained by using their contour plots of electron density and charge-density difference.
文摘In this paper a method has been proposed for the calculation of cohesive work and thus sur-face tension of liquids by the Monte Carlo computer simulation method with the use of Kihara po-tential. The surface tension values calculated for liquid argon, oxygen and nitrogen are in fairagreement with the experimental data.
文摘Haze concentration prediction,especially PM2.5,has always been a significant focus of air quality research,which is necessary to start a deep study.Aimed at predicting the monthly average concentration of PM2.5 in Beijing,a novel method based on Monte Carlo model is conducted.In order to fully exploit the value of PM2.5 data,we take logarithmic processing of the original PM2.5 data and propose two different scales of the daily concentration and the daily chain development speed of PM2.5 respectively.The results show that these data are both approximately normal distribution.On the basis of the results,a Monte Carlo method can be applied to establish a probability model of normal distribution based on two different variables and random sampling numbers can also be generated by computer.Through a large number of simulation experiments,the average monthly concentration of PM2.5 in Beijing and the general trend of PM2.5 can be obtained.By comparing the errors between the real data and the predicted data,the Monte Carlo method is reliable in predicting the PM2.5 monthly mean concentration in the area.This study also provides a feasible method that may be applied in other studies to predict other pollutants with large scale time series data.
文摘A random simulation method was used for treatment of systems of Volterra integral equations of the second kind. Firstly, a linear algebra system was obtained by discretization using quadrature formula. Secondly, this algebra system was solved by using relaxed Monte Carlo method with importance sampling and numerical approximation solutions of the integral equations system were achieved. It is theoretically proved that the validity of relaxed Monte Carlo method is based on importance sampling to solve the integral equations system. Finally, some numerical examples from literatures are given to show the efficiency of the method.